Abstract:
The invention concerns a method for producing toluenediamine by hydrogenation of dinitrotoluene in the presence of a catalyst, a dinitrotoluene being used as starting material and being processed by applying an electrical voltage.
Abstract:
The present invention relates to a process for the continuous production of nitrobenzene by the nitration of benzene with nitric acid and sulphuric acid under adiabatic conditions, not the entire production plant being shut down during a production stop, but the production plant being entirely or at least partly operated in recirculation mode. The invention further relates to a plant for producing nitrobenzene and to a method for operating a plant for producing nitrobenzene.
Abstract:
The invention relates to a process for working up alkaline waste water which is formed during washing of crude nitrobenzene obtained by nitration of benzene, wherein (i) the alkaline waste water is heated under an increased pressure with respect to atmospheric pressure with exclusion of oxygen and is then cooled and expanded; (ii) the waste water obtained in (i) is purified further by stripping with a stripping gas and the stripping gas stream loaded with impurities is then cooled to a temperature of from 10° C. to 60° C.; and (iii) the liquid process product obtained in (ii) by cooling the stripping gas stream loaded with impurities is separated into an aqueous and an organic phase and the organic phase is used further in an aniline production process.
Abstract:
The present invention relates to a method for purifying raw dinitrotoluenes resulting from dinitration of toluene in the presence of a nitric acid/sulfuric acid/nitrating acid mixture, and a device or plant for performing the method, and a corresponding production plant for producing dinitrotoluene, characterized in that (a) the raw dinitrotoluenes are first subjected to a wash with at least one washing medium after separation of the nitrating acid mixture, followed by a separation of the washing medium; and that (b) subsequently the washed dinitrotoluenes resulting from method step (a) are subjected to stripping (stripping gas treatment) with at least one gas (stripping gas).
Abstract:
The invention concerns a method for producing toluenediamine by hydrogenation of dinitrotoluene in the presence of a catalyst, a dinitrotoluene being used as starting material and being processed by applying an electrical voltage.
Abstract:
A process for the preparation of dintrotoluene which comprises (a) nitrating toluene with a nitrating acid, wherein said nitrating acid is a mixture of nitric acid and sulfuric acid, in one or more nitration steps, and separating the nitrating acid from the process stream thus formed, wherein a crude mixture comprising dinitrotoluene and a fraction of said nitrating acid dissolved therein is obtained, said crude mixture further comprising at least 50 ppm of HCN, and (b) washing the crude dinitrotoluene containing mixture in one or more washing steps, wherein, before the first washing step is carried out, the crude mixture is distilled and/or stripped to remove HCN therefrom, wherein a crude dinitrotoluene containing mixture which is essentially free of HCN is obtained.
Abstract:
A method and apparatus for removing non-aromatic impurities from non-nitrated aromatic reactant in a nitration production process, in which process an aromatic reactant is nitrated (100) to produce a nitrated aromatic product using a molar excess of the aromatic reactant, and non-nitrated aromatic reactant is recovered (102) from the produced nitrated aromatic product and is recycled (104) for use in the nitration production process. A portion of the removed excess non-nitrated aromatic reactant is diverted (106) and subjected to nitration (108). The nitrated stream may be further processed by separating out the spent acids (110) and the non-aromatic impurities (116). These streams may be sent (114, 118) to a suitable location in the nitration production train.
Abstract:
The present invention provides a continuous process for the production of nitrobenzene by nitration of benzene with mixtures of sulfuric and nitric acid using a stoichiometric excess of benzene, in which the content of aliphatic organic compounds in the feed benzene during the start-up period of the production plant is always maintained at less than 1.5 wt. %, based on the total mass of the feed benzene. This is achieved either by mixing the feed benzene comprising recycled unreacted benzene (recycled benzene) and benzene newly supplied to the reaction (fresh benzene) in appropriate quantitative ratios during the start-up period, depending on the purity of the two streams, or by completely omitting the recycling of unreacted benzene during the start-up period, i.e. the feed benzene consists only of benzene newly supplied to the reaction.
Abstract:
The invention relates to a process for the preparation of fluorinated compoundsAz.sub.x ArF.sub.w Cl.sub.(y-w) R.sub.z (1)in which Az is a radical --F, --Cl, --Br, --NO.sub.2, --CN, --CF.sub.3, --CCl.sub.3, --CHO, --CO(C.sub.n H.sub.2n+1), --COX or --SO.sub.2 X, where X is F, Cl or Br, x is an integer from 1 to 3, Ar is a phenyl radical, pyridyl radical or naphthyl, w is an integer from 1 to y, y is an integer from 1 to 5, R is H, an alkyl radical or an alkoxy radical having from 1 to 10 carbon atoms, z is an integer from 1 to 5, (x+y+z) is the number of all substitutable valences on the radical Ar, which comprises reacting a compoundAz.sub.x ArCl.sub.y R.sub.z (2),with an alkali metal fluoride in the presence of a component a) or a mixture of component a) and at least one of components b), c), d) and/or e), component a) being one or more quaternary ammonium compounds which contain one or more radicals --(C.sub.m H.sub.2m O)R.sup.5, component b) being an amidophosphonium salt, component c) being a quaternary ammonium salt, component d) being a quaternary phosphonium salt, component e) being a polyether, and carrying out the reaction at from 50 to 250.degree. C., removing the compound of the formula (1) formed during the reaction by distillation, and the compound of the formula (2) is fed to the reaction mixture at a rate corresponding to the rate at which the compound of the formula (1) is removed.
Abstract:
A process for reducing the level of tri-substituted phosphine, arsine and/or stibine oxide from a mixture comprising a desired product and at least one such oxide is provided, comprising the addition of a metal salt to the mixture to form a complex with the oxide, and removing the complex from the mixture. This process has particular utility for removing triphenylphosphine oxide from a mixture--a task that was previously hard to perform.