Abstract:
This disclosure pertains to the use of black liquors from kraft pulp mills as a source of catalysts for the thermochemical conversion of organic matter feedstocks to bio oils. More particularly, some embodiments pertain to integrated kraft pulp mill and thermochemical conversion systems, which include: a Kraft pulp mill comprising a digester for digesting a lignocellulosic material with white liquor to produce pulp and black liquors; a thermochemical conversion subsystem comprising: at least one mixing tank for combining pulping liquors received from the pulp mill with an organic matter feedstock and water to produce a reaction mixture; a reactor vessel for treating the reaction mixture received from the mixing tank at a reaction temperature and pressure suitable for conversion of all or a portion of the organic matter in the reaction mixture into a product mixture comprising a bioproduct and an aqueous stream containing both organic and inorganic compounds; and a depressurizer for depressurizing product mixture received from the reactor vessel; and one or more conveyors for conveying the pulping liquors from the pulp mill to the mixing tank.
Abstract:
An object of the present invention is to remove a compound A from “sevoflurane containing fluoromethyl-1,1,3,3,3-pentafluoroisopropenyl ether (compound A)” so as to collect high-purity sevoflurane. The present invention concerns a method for producing sevoflurane containing substantially no compound A, comprising the following steps of: bringing a composition containing hydrogen fluoride (HF) and water at a mass ratio of 1:1 to 1:30 into contact with a 1st organic liquid containing sevoflurane and a compound A, thereby obtaining a 2nd organic liquid containing the compound A in an amount that is lower than that in the 1st organic liquid (step 1a); and distilling the 2nd organic liquid under the presence of a degradation inhibitor, thereby obtaining sevoflurane containing substantially no compound A as a main distillation fraction (step 2).
Abstract:
This disclosure pertains to the use of black liquors from kraft pulp mills as a source of catalysts for the thermochemical conversion of organic matter feedstocks to bio oils. More particularly, some embodiments pertain to integrated kraft pulp mill and thermochemical conversion systems, which include: a Kraft pulp mill comprising a digester for digesting a lignocellulosic material with white liquor to produce pulp and black liquors; a thermochemical conversion subsystem comprising: at least one mixing tank for combining pulping liquors received from the pulp mill with an organic matter feedstock and water to produce a reaction mixture; a reactor vessel for treating the reaction mixture received from the mixing tank at a reaction temperature and pressure suitable for conversion of all or a portion of the organic matter in the reaction mixture into a product mixture comprising a bioproduct and an aqueous stream containing both organic and inorganic compounds; and a depressurizer for depressurizing product mixture received from the reactor vessel; and one or more conveyors for conveying the pulping liquors from the pulp mill to the mixing tank.
Abstract:
Processes for producing propylene glycol monoalkyl ether are described herein and include contacting propylene oxide and an alcohol in the presence of an alkali or alkaline earth metal alkoxide catalyst to produce an alkoxylation mixture including propylene glycol monoalkyl ether; distilling the alkoxylation mixture to produce a first overhead stream including propylene oxide and the alcohol and a first bottoms stream including propylene glycol monoalkyl ether; distilling the first bottoms stream to produce a second overhead stream including purified propylene glycol monoalkyl ether and a second bottoms stream including heavier byproducts; further distilling the second bottoms stream to form a resulting bottoms stream including caustic and heavier byproducts; introducing an alkali metal borohydride into at least a portion of the resulting bottoms stream to form an alkali metal borohydride containing stream; and introducing the alkali metal borohydride containing stream into one or more distillations upstream of recovery of the second overhead stream.
Abstract:
Process for obtaining ditrimethylolpropane and trimethylolpropane-enriched product streams from the high-boiling fractions and residues which are obtained in the distillative purification of trimethylolpropane, characterized in that these high-boiling fractions and residues are combined and a polar solvent is added to produce a solution and the solution is treated at a temperature of 120 to 280° C. and at a pressure of 2 to 25 MPa with hydrogen in the presence of a solid nickel catalyst and an acidic compound. After catalytic treatment, the solution is subjected to multi-stage distillation including with a thin film evaporator with a column attachment in order to recover ditrimethylolpropane and trimethylolpropane-enriched product streams.
Abstract:
A process of contacting an alkylene oxide with 2-methoxy-1-propanol (PM1) in the presence of an oligomeric Schiff base metal complex catalyst is disclosed. Further, a process involving contacting an alkylene oxide with an alkyl alcohol using an oligomeric Schiff base metal complex as a catalyst is also disclosed. Additionally, novel compositions which can be used as catalysts in processes involving the contacting of an alkyl alcohol with an alkylene oxide are also disclosed.
Abstract:
The present invention relates to a method of obtaining radiopharmaceutical precursors, and in particular precursors to protected amino acid derivatives, which are used as precursors for production of radiolabelled amino acids for use in in vivo imaging procedures, such as positron emission tomography (PET).
Abstract:
A process of contacting an alkylene oxide with 2-methoxy-1-propanol (PM1) in the presence of an oligomeric Schiff base metal complex catalyst is disclosed. Further, a process involving contacting an alkylene oxide with an alkyl alcohol using an oligomeric Schiff base metal complex as a catalyst is also disclosed. Additionally, novel compositions which can be used as catalysts in processes involving the contacting of an alkyl alcohol with an alkylene oxide are also disclosed.
Abstract:
Novel 1,3-dialkyloxy-2-propanol and alkoxylates thereof may be prepared in good yield by a convenient process comprising adding epichlorohydrin to a stoichiometric excess of alcohol, wherein the ratio of alcohol:epichlorohydrin is at least about 3:1, preferably in the presence of a Group 1A metal hydroxide and a phase transfer catalyst. The result shows excellent selectivity of to the 1,3-substitution positions, and the alkyl chain may be saturated or unsaturated and may contain one or more heteroatoms. The alkoxylates may include repeating alkoxy units in the 2-position. The compositions are useful as surfactants, diluents, and the like.
Abstract:
Novel alkylene oxide-extended alkoxylates of a branched 1,3-dialkyl-oxy-2-propanol may be prepared by a convenient process comprising adding epichlorohydrin to a stoichiometric excess of a branched alcohol, wherein the molar ratio of branched alcohol:epichlorohydrin is at least about 3:1, preferably in the presence of a Group 1 A metal hydroxide and a phase transfer catalyst, followed by alkoxylation in the presence of an ionic catalyst. The branched alkyl chain may be saturated or unsaturated and may contain one or more heteroatoms. The repeating alkoxy units from the alkylene oxide are in the 2-position. The compositions are useful as surfactants, diluents, and the like, and may be less expensive than other branched surfactants.