Abstract:
The present invention relates to a wireless access system supporting a full duplex radio (FDR) transmission environment. A signal transmission and reception method of a base station for a signal in a wireless access system supporting a FDR, according to one embodiment of the present invention, comprises the steps of: transmitting, to a terminal, an indicator which notifies of an application of terminal-specific time division duplex (TDD); transmitting, to the terminal, frame setting information according to the terminal-specific TDD; and transmitting and receiving a signal to and from the terminal on the basis of the frame setting information, wherein the frame setting information is capable of being set on the basis of a first constraint in which a first subframe is a downlink subframe and a special subframe always exists.
Abstract:
Provided are a method for allocating a temporary radio network temporary identifier to a terminal within a random access procedure in a wireless communication system, and an apparatus supporting the same. The method for allocating a temporary radio network temporary identifier (T-RNTI) to a user equipment (UE) within a random access procedure in a wireless communication system, includes transmitting, by the UE, a random access preamble to a base station (BS), transmitting, by the UE, a radio resource control (RRC) request message to the BS through a contention-based physical uplink shared channel (PUSCH) resource block in which uplink data can be transmitted without uplink resource allocation scheduling, and receiving, by the UE, an RRC connection setup message identified by a T-RNTI allocated to the UE in response to the RRC request message, wherein the T-RNTI is allocated on the basis of the contention-based PUSCH resource block in which the RRC request message has been transmitted.
Abstract:
A method for decoding a low density parity check (LDPC) code for forward error correction by a receiver side in a wireless communication system according to an embodiment of the present invention comprises the steps of: acquiring a first reconstructed packet vector by decoding a reception packet vector encoded by an LDPC code generation matrix; determining a candidate for an error packet to be excluded form the reception packet vector when an error is detected in the first reconstructed packet vector; and acquiring a second reconstructed packet vector from the reception packet vector from which the determined candidate for the error packet has been excluded, wherein the step of acquiring the second reconstructed packet vector includes acquiring the second reconstructed packet vector through Gaussian elimination for the LDPC code generation matrix from which a row matrix corresponding to the candidate for the error packet has been excluded.
Abstract:
An apparatus and method for transmitting a power headroom report in a communication system supporting multi-carriers are disclosed, by which a user equipment is enabled to transmit the power headroom report. According to the present invention, a user equipment calculates a power headroom for each of at least one activated serving cell using a maximum transmission power of the user equipment for each of at least one activated serving cell and transmits the power headroom report including the power headroom for each of the at least one activated serving cell and the maximum transmission power of the user equipment for each of the at least one activated serving cell to a base station. In this case, the power headroom includes an information on power status of the user equipment for each of the at least one activated serving cell.
Abstract:
A method for a terminal receiving a downlink signal for low transmission latency in a wireless communication system, according to one embodiment of the present invention, comprises the steps of: receiving a downlink control channel from a base station; and receiving a downlink data channel based on control information transmitted from the downlink control channel. Here, the downlink data channel is transmitted in at least one advanced subframe comprising M number of orthogonal frequency division multiplexing (OFDM) symbols, and the downlink control channel is transmitted in at least one special symbol which is separate from the advanced subframe.
Abstract:
The present disclosure relates to an operating method of a terminal for transceiving data to/from a base station in a system that supports a plurality of component carriers. The method includes receiving, from the base station, downlink control information (DCI) masked using a terminal identifier (cell-radio network temporary identifier (C-RNTI)) or a semi-persistent scheduling terminal identifier (SPS C-RNTI) through a physical downlink control channel (PDCCH); determining a component carrier for transceiving data to/from the base station; and transceiving data to/from the base station through the determined component carrier. The determining includes determining the component carrier which has received the PDCCH as a component carrier for receiving downlink data, and determining an uplink component carrier linked with the component carrier which has received the PDCCH as a component carrier for transmitting uplink data.
Abstract:
Disclosed are a method for setting a resource, the method comprising the steps of: estimating channel information on each of a plurality of frequency resources available through CA by a base station in a FDR communication environment supporting the CA; transmitting the estimated channel information on the plurality of frequency resources to a counterpart node with which the base station is to perform a FDR communication; receiving channel information estimated by the counterpart node from the counterpart node; and selecting a frequency resource to be used for the FDR communication among the plurality of frequency resource by considering first channel information and second channel information together.
Abstract:
A method for a terminal transmitting an uplink signal for low transmission latency in a wireless communication system, according to one embodiment of the present invention, comprises the steps of: transmitting to a base station an uplink control channel containing control information on an uplink data channel; and transmitting the uplink data channel. Here, the uplink data channel is transmitted in at least one advanced subframe comprising M number of orthogonal frequency division multiplexing (OFDM) symbols, and the uplink control channel is transmitted in at least one special symbol which is separate from the advanced subframe.
Abstract:
A method for channel measurement is provided when a mobile terminal is configured with a primary component carrier and a secondary component carrier. The mobile terminal receives configuration information for channel measurement in the secondary component carrier from a base station. The mobile terminal derives the channel measurement in the secondary component carrier based on a channel state information reference signal (CSI-RS) when the configuration information includes a first indicator indicating that CSI-RS is used for the channel measurement in the secondary component carrier, or deriving the channel measurement in the secondary component carrier based on a cell-specific reference signal (CRS) when the configuration information does not include the first indicator.
Abstract:
The present invention relates to a wireless access system, and particularly, provides a method for performing seamless handover in a network system supporting a double connectivity mode, and apparatuses supporting the method. As an embodiment of the present invention, a method for supporting handover by a source cell in a wireless access system supporting a double connectivity mode may comprise the steps of: receiving a measurement report message from a user equipment; transmitting small cell maintenance request information to a target cell; and receiving small cell maintenance response information from the target cell. The double connectivity mode is a mode in which a terminal maintains simultaneous connection to the source cell and a small cell. The small cell maintenance request information is information for requesting maintenance of the double connectivity mode for the small cell in order to support the handover. The small cell maintenance response information is information for indicating whether the target cell can maintain the double connectivity mode for the small cell.