Abstract:
A beam power source transmits a signal indicating power availability, receives a request for power in response, and beams power in response to the request.
Abstract:
Exemplary methods, systems and components enable an enhanced direct-viewing optical device to include customized adjustments that accommodate various optical aberrations of a current user. A real-time adjustment of transformable optical elements is sometimes based on predetermined corrective optical parameters associated with a current user. Customized optical elements are incorporated with the direct-viewing optical device to produce a specified change in optical wavefront at an exit pupil. Possible transformable or replacement optical elements may have refractive and/or reflective and/or diffractive and/or transmissive characteristics that are selected based on current performance viewing factors for a given field of view of the direct-viewing device. Some embodiments enable dynamic repositioning and/or transformation of corrective optical elements responsive to a detected shift of a tracked gaze direction of a current user. Replacement corrective optical elements may be fabricated for current usage or retained in inventory for possible future usage in the direct-viewing device.
Abstract:
A field emission device is configured as a heat engine. Different embodiments of the heat engine may have different configurations that may include a cathode, gate, suppressor, and anode arranged in different ways according to a particular embodiment. Different embodiments of the heat engine may also incorporate different materials in and/or proximate to the cathode, gate, suppressor, and anode.
Abstract:
Systems and methods are described relating to accepting an indication of an inertial impact associated with at least one mobile device; and presenting an indication of location of the at least one mobile device at least partially based on accepting the indication of the inertial impact associated with the at least one mobile device. Additionally, systems and methods are described relating to means for accepting an indication of an inertial impact associated with at least one mobile device; and means for presenting an indication of location of the at least one mobile device at least partially based on accepting the indication of the inertial impact associated with the at least one mobile device.
Abstract:
Described embodiments include a system, method, and program product. A described system includes a circuit that determines a substantial correspondence between a human-perceivable feature included in a border region segment of a selected medical skin image and a human-perceivable feature included in each other medical skin image of a plurality of medical skin images. A circuit gathers the determined substantial correspondences. A circuit generates data indicative of a border region-overlap status of the selected medical skin image. A circuit adds the data to an omitted-coverage list. A circuit iteratively designates a next medical skin image as the selected digital image, and initiates a processing of each of the iteratively designated next medical skin images. A circuit identifies a possible non-imaged portion of the region of interest. A circuit outputs user-assistance information based on the identified possible non-imaged portion of the skin.
Abstract:
Embodiments disclosed herein are directed to systems configured to deliver energy out of a living subject to power at least one external device, and related apparatuses, and methods of use.
Abstract:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance voice conferencing among multiple speakers. In one embodiment, the AEFS receives data that represents utterances of multiple speakers who are engaging in a voice conference with one another. The AEFS then determines speaker-related information, such as by identifying a current speaker, locating an information item (e.g., an email message, document) associated with the speaker, or the like. The AEFS then informs a user of the speaker-related information, such as by presenting the speaker-related information on a display of a conferencing device associated with the user.
Abstract:
Techniques for ability enhancement are described. In some embodiments, devices and systems located in a transportation network share threat information with one another, in order to enhance a user's ability to operate or function in a transportation-related context. In one embodiment, a process in a vehicle receives threat information from a remote device, the threat information based on information about objects or conditions proximate to the remote device. The process then determines that the threat information is relevant to the safe operation of the vehicle. Then, the process modifies operation of the vehicle based on the threat information, such as by presenting a message to the operator of the vehicle and/or controlling the vehicle itself.
Abstract:
Techniques for sensory enhancement and augmentation are described. Some embodiments provide an audible assistance facilitator system (“AAFS”) configured to provide audible assistance to a user via a hearing device. In one embodiment, the AAFS receives data that represents an utterance of a speaker received by a hearing device of the user, such as a hearing aid, smart phone, media device, or the like. The AAFS identifies the speaker based on the received data, such as by performing speaker recognition. The AAFS determines speaker-related information associated with the identified speaker, such as by determining an identifier (e.g., name or title) of the speaker, by locating an information item (e.g., an email message, document) associated with the speaker, or the like. The AAFS then informs the user of the speaker-related information, such as by causing an audio representation of the speaker-related information to be output via the hearing device.