Abstract:
Techniques for supporting location services for a home Node B (HNB) and its user equipments (UEs) are disclosed. In an aspect, location services may be supported for a UE by having an HNB inter-work between user plane and control plane location solutions. In one design, the HNB receives a request for a location service for the UE and communicates (i) with a location server via the user plane location solution and (ii) with the UE via the control plane location solution to support the location service for the UE. The HNB inter-works between the user plane and control plane location solutions. In another aspect, a location server may be used to support assisted GNSS (A-GNSS) for HNBs and UEs. In one design, an HNB exchanges PCAP messages with the location server via an HNB GW and exchanges RRC messages with a UE to support a location service for the UE.
Abstract:
Methods and apparatuses are presented for obtaining authorized access from a terminal to a discovered location server. The methods may include switching from a first network that does not support authenticated access from the terminal to a home location server to a second network that does support authenticated access from the terminal to the home location server. Authenticated access to the home location server may be obtained using the second network. Authorization for the discovered location server may then be obtained from the home location server. The terminal may then switch from the second network back to the first network. The terminal may then access the discovered location server using the first network based on the obtained authorization from the home location server.
Abstract:
A large volume of location related information, e.g., assistance data or location information, is transferred in separate messages between a server and a target by segmenting the location related information into a plurality of messages. If the connection between the server and target is released prior to completion of the transfer of the location related information, the transfer is resumed by sending the remaining messages after connection is reestablished. Each message is sent after receiving an acknowledgement of receipt. Thus, both the server and target can control the flow of the transfer by delaying the sending of one or more messages or delaying the sending of the acknowledgements of receipt.
Abstract:
Systems and methods for requesting and providing assistance data for a satellite positioning system are described herein. A method as described herein includes receiving, at a base station over a wireless communication link, a first message from a mobile station, wherein the first message comprises a first field identifying requested assistance data associated with a first Satellite Positioning System (SPS) and a second field identifying a requested format of the requested assistance data, and wherein the requested assistance data are available in a plurality of formats that includes the requested format; and transmitting a second message from the base station to the mobile station over the wireless communication link, wherein the second message includes the requested assistance data in the requested format.
Abstract:
The disclosure is directed to determining a location of a user equipment (UE) in a poor positioning environment based on locations of one or more devices. A first location and a first location uncertainty of the first device is received from a first device, a determination whether or not the first location uncertainty is less than a location uncertainty of the UE is made, and if the first location uncertainty is less than the location uncertainty of the UE, the location of the UE is determined based on the location of the first device and a distance to the first device.
Abstract:
Techniques for access point acquisition using the location of a mobile device and probabilistic self-learning are described herein. An example of a method of scanning for an access point with a mobile device includes detecting a serving cell, determining a location for the mobile device, determining a maximum coverage area of an access point that is associated with the serving cell, determining whether the location of the mobile device is within the maximum coverage area, and performing a fast rate scan for the access point if the location is within the maximum coverage area.
Abstract:
Techniques are provided which may be implemented in various methods, apparatus, and/or articles of manufacture to allow a mobile device to obtain certain location service(s) and/or the like from one or more computing devices that have been authorized for use. For example, in certain implementations, an authorizing location server may obtain a first message from a mobile device indicating a first set of location servers, determine a second set of location servers based, at least in part, on the first set of location servers, and transmit a second message to the mobile device indicating that the second set of location servers are authorized for location service related access by the mobile device.
Abstract:
Techniques for supporting positioning for terminals in a wireless network are described. In an aspect, a message is prepared and transmitted with a message segment including a version of a protocol used to encode the message and a compatibility level associated with inter-operable protocol versions, wherein different compatibility levels indicate non-compatibility between protocol versions. In another aspect, a message is received with a message segment including a version of a protocol used to encode the message and a compatibility level associated with inter-operable protocol versions, wherein different compatibility levels indicate non-compatibility between protocol versions. The compatibility level included in the received message is compared to an internal compatibility level and a response message is prepared and transmitted with a message segment including the internal compatibility level.
Abstract:
Methods, systems, and devices are described for communicating telematics data and metadata. A first device transmits a first signaling message to a second device over a communication session signaling protocol. The first signaling message includes at least a first set of session information related to a communication session between the first device and the second device and a first set of telematics data for the first device. The first device receives a second signaling message from the second device over the communication session signaling protocol. The second signaling message includes metadata based on a content of the first set of telematics data transmitted in the first signaling message.
Abstract:
A particular method includes generating, at a secure user plane location (SUPL) server, a message to be sent to a mobile device, the message including: a server certificate including an identifier of the SUPL server and a public key of the SUPL server; and a request for a device certificate of the mobile device. The method also includes receiving a reply from the mobile device that includes a device certificate of the mobile device; and authenticating the mobile device as associated with a SUPL user based on the device certificate.