Abstract:
In a memory cell (110) having multiple floating gates (160), the select gate (140) is formed before the floating gates. In some embodiments, the memory cell also has control gates (170) formed after the select gate. Substrate isolation regions (220) are formed in a semiconductor substrate (120). The substrate isolation regions protrude above the substrate. Then select gate lines (140) are formed. Then a floating gate layer (160) is deposited. The floating gate layer is etched until the substrate isolation regions are exposed. A dielectric (164) is formed over the floating gate layer, and a control gate layer (170) is deposited. The control gate layer protrudes upward over each select gate line. These the control gates and the floating gates are defined independently of photolithographic alignment. In another aspect, a nonvolatile memory cell has at least two conductive floating gates (160). A dielectric layer (164) overlying the floating gate has a continuous feature that overlies the floating gate and also overlays a sidewall of the select gate (140). Each control gate (160) overlies the continuous feature of the dielectric layer and also overlies the floating gate. In another aspect, substrate isolation regions (220) are formed in a semiconductor substrate. Select gate lines cross over the substrate isolation regions. Each select gate line has a planar top surface, but its bottom surface goes up and down over the substrate isolation regions. Other features are also provided.
Abstract:
A floating gate (110) of a nonvolatile memory cell is formed in a trench (114) in a semiconductor substrate (220). A dielectric (128) covers the surface of the trench. The wordline (140) has a portion overlying the trench. The cell's floating gate transistor has a first source/drain region (226), a channel region (224), and a second source/drain region (130). The dielectric (128) is stronger against leakage near at least a portion of the first source/drain region (122) than near at least a portion of the channel region. The stronger portion (128.1) of the additional dielectric improves data retention without increasing the programming and erase times if the programming and erase operations do not rely on a current through the stronger portion. Additional dielectric (210) has a portion located below the top surface of the substrate between the trench and a top part of the second source/drain region (130). The second source/drain region has a part located below the additional dielectric and meeting the trench. The additional dielectric can be formed with shallow trench isolation technology. The additional dielectric reduces the capacitance between the second source/drain region (130) and the floating gate.
Abstract:
An operating method for a fault detection of a semiconductor process and a diagnostic system for fault detection in a semiconductor process are described. By using the method and the diagnostic system, the real-time process parameters collected during the process is performed by the tool become meaningful and are correlated with the historic process performance data obtained by the post process metrology process. Moreover, the method and the diagnostic system further provide an alarm index for the process performed on the tool to actually reflect the process environment during the process is performed after correlating the real-time process parameters and the historic process performance data. With referring to the alarm index, the current process performance under the real-time process parameters in the tool can be accurately diagnosed.
Abstract:
A flash memory structure comprises a semiconductor substrate, a source region, a drain region, a first insulating dielectric layer, a floating gate, a second insulating dielectric layer, and a control gate. The semiconductor substrate has a first top surface and a second top surface that is lower than the first top surface. The source region and the drain region are respectively in the second top surface and the first top surface of the semiconductor substrate, and the semiconductor substrate connecting the source region and the drain region is a vertical channel region. The whole channel region is covered by the first insulating dielectric layer, the floating gate, the second insulating dielectric layer, and the control gate in turn.
Abstract:
In a nonvolatile memory, substrate isolation regions (220) are formed in a semiconductor substrate (120). The substrate isolation regions are dielectric regions protruding above the substrate. Then select gate lines (140) are formed. Then a floating gate layer (160) is deposited. The floating gate layer is etched until the substrate isolation regions are exposed and the floating layer is removed from over at least a portion of the select gate lines. A dielectric (1510) is formed over the floating gate layer, and a control gate layer (170) is deposited. The control gate layer protrudes upward over each select gate line. These protrusions are exploited to define the control gates independently of photolithographic alignment. The floating gates are then defined independently of any photolithographic alignment other than the alignment involved in patterning the substrate isolation regions and the select gate lines. In another aspect, a nonvolatile memory cell has a conductive floating gate (160). A dielectric layer (1510) overlying the floating gate has a continuous feature that overlies the floating gate and also overlies the select gate (140). The control gate (160) overlies the continuous feature of the dielectric layer and also overlies the floating gate but not the select gate. In another aspect, substrate isolation regions (220) are formed in a semiconductor substrate. Select gate lines cross over the substrate isolation regions. Each select gate line has a planar top surface, but its bottom surface goes up and down over the substrate isolation regions. Other features are also provided.
Abstract:
In a nonvolatile memory cell having at least two floating gates, each floating gate (160) has an upward protruding portion. This portion can be formed as a spacer over a sidewall of the select gate (140). The spacer can be formed from a layer (160.2) deposited after the layer (160.1) which provides a lower portion of the floating gate. Alternatively, the upward protruding portion and the lower portion can be formed from the same layers or sub-layers all of which are present in both portions. The control gate (170) can be defined without photolithography. Other embodiments are also provided.
Abstract:
This invention relates to a method for yield loss analysis of process steps of semiconductor wafers having a plurality of dies, and more particularly relates to a defect inspection technique to determine a hit ratio, computation of yield impact contributions for the defects, and determination of a kill ratio for a specific type of defect. Yield loss is estimated ultimately upon a choice of a defect density distribution function. A defect calibrated factor and a yield impact calibrated factor are introduced herein.
Abstract:
A method of forming a contact opening is provided. First, a substrate having a plurality of conductive structures formed thereon is provided. An ion implantation is performed. Thereafter, a thermal treatment is carried out to form a liner layer on the sidewall of the conductive structure and the exposed substrate. The liner layer on the sidewall of the conductive structure has a thickness smaller than the liner layer on the substrate surface. A spacer is formed on each side of the conductive structure and then an insulation layer is formed over the substrate. The insulation layer is patterned to form a contact opening between two neighboring conductive structures. Since the liner layer on the sidewall of the conductive structures is already quite thin, there is no need to reduce thickness through an etching operation and uniformity of the liner layer on the substrate can be ensured.
Abstract:
A circuit and method of generating an internal chip clock signal for distribution throughout an integrated circuit in response to an external clock signal includes the steps of generating a minimum width internal clock signal if the width of the external clock signal is less than a predetermined minimum width, generating an internal clock signal having a width substantially equal to the width of the external clock signal if the width of the external clock signal is greater than a predetermined minimum width but less than a predetermined maximum width, and generating a maximum width internal clock signal if the width of the external clock signal is greater than a predetermined maximum width.
Abstract:
A control gate layer (170) for a nonvolatile memory cell is formed over a select gate (140). The control gate layer protrudes upward over the select gate. An auxiliary layer (1710) is formed over the control gate layer so as to expose a protruding portion of the control gate layer. The protruding portion is processed (e.g. oxidized) to form a protective layer (1720) selectively on the control gate layer but not on the auxiliary layer. The auxiliary layer is then removed. Then the control gate layer is etched selectively to the protective layer. The protruding portion of the control gate layer is not etched away because it is protected by the protective layer. This portion provides a self-aligned control gate. The protective layer can then be removed, and a conductive material (2920), e.g. metal silicide, can be formed selectively on the protruding portion of the control gate layer in a self-aligned manner to reduce the control gate resistance. Other embodiments are also provided.