Abstract:
A specific emitter identification (SEI) method and apparatus is capable of identifying and tracking objects within a geographical area of interest wherein the system and method has not been preprogrammed to look for particular signals. The system and method receives all of the emitted electromagnetic signals emitted from area of interest. The system and method next performs high order statistical analysis on the received signals and determines which signals emanate from possible targets of interest and which likely emanate from background clutter/noise by comparing the relative degrees of Gaussianness of the signals (for example using entropy measurements). The least Gaussian signals are deemed to likely be signals from potential targets of interest while those which are more Gaussian are deemed to be likely from background clutter or noise.
Abstract:
The system contains a lamination press. The first cavity is formed in a chassis. A film assembly is fitted within the chassis. A buffer mounts over the film assembly and within the chassis. A tool set is shaped to fit within the first cavity. The tool set and chassis are positioned within the lamination press to confer heat and pressure from the lamination press to the film assembly and chassis.
Abstract:
A single aperture three channel optical system is disclosed. In one embodiment, the optical system includes a front optical group and a back optical group that is disposed in substantially close proximity to the front optical group. Further, the optical system includes a first sensor, a second sensor, and a third sensor. The front optical group and the second optical group receives an object beam and splits into a reflected beam having first wavelengths and a transmitted beam of second wavelengths. Furthermore, the front optical group and the second optical group splits the reflected beam having first wavelengths into a transmitted beam having third wavelengths and a reflected beam having fourth wavelengths. The first sensor, the second sensor and the third sensor receive the transmitted beam of second wavelengths, transmitted beam of third wavelengths, and reflected beam of fourth wavelengths, respectively and produce the coaxial three channel images.
Abstract:
In the method of wide area airborne surveillance, the improvement comprising a single focal plane array camera assembly, said assembly comprising two points of rotation and capable of mapping a plurality of exposures to form one wide area airborne image.
Abstract:
A device that filters optical signals using a waveguide having a slotted optical pathway. The shape of the optical pathway passively restricts at least one optical signal from traveling through the waveguide. The device can also be used to reference the phase of an optical signal in an optical circuit.
Abstract:
An inertial delay mechanism for use in an explosive projectile is provided. The delay mechanism consists of an inertial delay fuse that is precise, doesn't require sensitive primary explosives and doesn't utilize electronic circuitry. The inertial delay fuse includes a free sliding charge element that strikes an anvil located opposite to the sliding charge element. A delay gap is provided between the sliding charge element and the anvil. Upon impact, the sliding charge element slides forward and impacts the anvil, thereby inducing a shock wave in an initiator charge that subsequently results in detonation of main charges. The design is mechanically simple and robust enough to withstand severe g-loading forces that occur during firing and penetration of a projectile.
Abstract:
A system and method for selecting an optimal frequency channel to communicate on in a wireless network is disclosed. The optimal frequency is selected from a predefined set of frequencies for all nodes to communicate on based on an exposure calculation. All underlay nodes collect initial SNR information from initial detection of other nodes and adjust their transmit power for an intended receiver such that the signal is received at the lowest allowable underlay-to-overlay power ratio, thus minimizing exposure. The desired underlay-to-overlay ratio is set based on how much we are capable of cancelling the overlay signal and the SINR at which a signal can be recovered such that the data can be successfully received from the underlay node. The optimal channel selected by this algorithm is the one with the least area of undesired exposure, or least probability of interfering with the primary user. The performance increases as a function of number of nodes, or data points.
Abstract:
An apparatus for optical spectrometry utilizes a simplified construction, reducing the number of independent optical elements needed while providing a sizeable dispersed spectrum. The apparatus provides a spectral intensity distribution of an input source wherein individual spectral components in the source can be measured and, in some embodiments, can be manipulated or filtered.
Abstract:
An error correction decoding (ECC) processing scheme is disclosed that reduces computational complexity normally associated with multiuser detection (e.g., TurboMUD) solutions, without causing degradation in quality of service or decreasing the total throughput. Error correction decoding algorithms are applied only to portions of the estimates that were affected by the immediately previous MUD update process. Even though the MUD and/or ECC updating is targeted so as to reduce complexity of each iteration, all of the estimates are maintained and remain candidates for future updates. As such, there is no negative impact real-time or future performance. This targeting approach can be used in conjunction with many variations of MUD, including full-complexity or reduced complexity, and may include MUD with confidence ordering or voting, and other techniques for facilitating efficient and effective MUD processing.
Abstract:
A QWIP structure is disclosed that is configured with enhanced optical coupling to improve absorption capability and efficiency. A waffle-type light-coupling grating having a pattern of etched holes operates to improve absorption by preventing photons from bouncing out of the detector sensing areas. A post-type light coupling grating can also be used. Parameters of the grating, including its orientation, pitch, and etch depth, can be adjusted to optimize specific color detection. The grating can include a hybrid metal layer including both ohmic and reflective qualities to further improve quantum and conversion efficiency. A nullphoton-in-a-boxnull configuration is also disclosed, where sides of the QWIP sensing areas are coated with reflective metal to further inhibit the escaping of photons. The material design and number of quantum wells per QWIP can be selected so as to exploit the avalanche effect, thereby increasing device responsivity.