Abstract:
A system for diagnosis or treatment of tissue in a body is provided. The system includes an ablation catheter having a deformable, elongate shaft having proximal and distal ends. The catheter further includes an ablation delivery member disposed proximate the distal end of the shaft and configured to deliver ablation energy to ablate the tissue. In one embodiment, the ablation delivery member comprises an ablation electrode and may also be configured to generate a signal indicative of electrical activity in the tissue. The catheter further includes one or more sensing electrodes disposed proximate the ablation delivery member. The sensing electrodes are configured to generate signals indicative of electrical activity in the tissue. The system further includes an electronic control unit configured to control delivery of ablation energy from the ablation delivery member responsive to one or more of the generated signals indicative of electrical activity in the tissue.
Abstract:
A catheter includes a flexible tubing having a proximal end and a distal end. The catheter also includes an electrode assembly attached to the distal end of the flexible tubing and having a first magnet therein. The electrode assembly further includes an electrically conductive tip electrode and an electrically nonconductive coupler which is connected between the tip electrode and the distal end of the flexible tubing. The coupler and the tip electrode are coupled by an interlocking connection. The catheter also includes a second magnet spaced from the electrode assembly along a longitudinal axis of the tubing. The first magnet and the second magnet are responsive to an external magnetic field to selectively position and guide the electrode assembly within a body of a patient.
Abstract:
A magnetically-guided catheter includes a tip positioning magnet in the distal end portion thereof configured to interact with externally applied magnetic fields for magnetically-guided movement. The magnet may be geometrically asymmetric, for example, a C-shape in radial cross-section, so as to allow side-loading of an irrigation fluid lumen and other wire(s) or lines during fabrication. The outer shaft includes a plurality of segments, including a generally soft segment at the distal end thereof for magnetically-guided navigation. The fluid lumen, which extends through the outer shaft, and further extends completely through the magnet for coupling to the ablation electrode irrigation fluid inlet, is constructed so that its mechanical properties (i.e., flexibility) substantially matches that of the outer shaft. The combination of the outer shaft, inner fluid lumen and positioning magnet has interoperability with a broad range of ablation tip assemblies.
Abstract:
An embodiment of a method for solving the inverse problem of electrophysiology and determining a voltage distribution on a surface of a tissue may comprise receiving a plurality of voltages collected by a plurality of electrodes adjacent to the surface, discretizing the problem using a Finite Element Method (FEM) or a Boundary Element Method (BEM), introducing one or more regularization terms to an error minimization formulation, and solving, by a processor, the voltage distribution according to the plurality of voltages and according to the regularization terms. The regularization terms may comprise one or more of a Laplacian smoothness operator, a Tikhonov regularization matrix, a confidence matrix, and a linear operator that interpolates the plurality of electrode voltages to the tissue voltage distribution.
Abstract:
An embodiment of an elongate medical device may comprise a shaft body having a distal end portion and a proximal end portion and three or more deflection wire assemblies, each deflection wire assembly comprising a flat wire coupled to the distal end portion and configured to deflect the distal end portion. Each flat wire may have a respective length defining a respective deflection radius, wherein each deflection radius is different.
Abstract:
An apparatus for deflecting a distal portion of a catheter, a sheath, a medical device, or other flexible elongate member may generally include a handle portion, a pair of adjusting knobs, and deflection wires. The adjusting knobs may be rotatably coupled to the handle portion and operably coupled to the deflection wires. The deflection wires may be in further communication with the distal portion of the flexible elongate member. Rotation of the adjustment knobs may translate or otherwise displace particular deflection wires with respect to the rest of the flexible elongate member, thereby causing the distal portion of the flexible elongate member to deflect. Further, the deflection wires may be oriented such that the distal portion of the flexible elongate member may be deflected in a multitude of directions.
Abstract:
A sensing assembly for sensing contact with an object is disclosed. The contact sensing assembly may comprise an elongate tubular body. An electrode may be connected to the elongate tubular body. A vibration element is operatively connected with the electrode and configured to deliver a vibration-inducing signal to induce vibration of the electrode. A sensor is configured to monitor the electrode for a perturbation in the induced vibration. The perturbation results from contact between the electrode and the object.
Abstract:
A medical device positioner for use with a remote catheter guidance system (RCGS) is provided, which can address angular, lateral and/or translational misalignment of an elongate medical device between the RCGS and an access point on a patient's body. Such a medical device positioner can comprise a base configured to attach to a remote catheter guidance system and a first support member extending from the base and having a receiving portion for receiving at least a portion of the elongate medical device. The medical device positioner can further include a second support member movably coupled to the first support member and including a second receiving area sized and configured to receive at least a portion of the elongate medical device. The medical device positioner can also include first and second tube sections with at least a portion of the first tube section being adapted to be inserted into a vascular system of a patient at an access point. A joint septum can be included for connecting the first and second tube sections.
Abstract:
An electrode coupling output system associated with an electrode catheter that provides indication to the physician via the navigation system, concerning the electrical coupling of an electrode, such as an ablative or mapping electrode, with a patient. The indication may be provided by changing the color or other display characteristics of the electrode on the navigation system display or by way of providing a waveform indicating the electrode coupling. In this manner, electrode coupling information is provided to a physician in a manner that minimizes physician distraction.
Abstract:
A system and method are provided for assessing the compliance of internal patient tissue for purposes of catheter guidance and/or ablation procedures. Specifically, the system/method provides for probing internal patient tissue in order to obtain force and/or tissue displacement measurements. These measurements are utilized to generate an indication of tissue elasticity. In one exemplary embodiment, the indication of elasticity is correlated with an image of the internal tissue area and an output of this image including elasticity indications is displayed for a user.