Abstract:
A decoder for use in a wireless communication device, the decoder comprising a correlator for correlating a received data sequence with a set of codewords such that a correlation value is generated for each correlation, wherein the set of codewords correspond to possible codewords that could be generated from encoding bit sequences having a predetermined number of information bits; a selector for selecting a first correlation value and a second correlation value generated by the correlator and for subtracting the second correlation value from the first correlation value to generate a third value; and a comparator for comparing the third value with a predetermined value to generate a decoding reliability indicator.
Abstract:
Apparatus, and an associated method, for determining whether to accept as valid a data segment, such as a radio block communicated pursuant to an EDGE communication session. A bit error rate measurer measures the bit error rate of a header part of a received radio block. The measured bit error rate is compared against a selected threshold. Results of the comparison are determinative of whether the radio block is accepted as valid or rejected as corrupted.
Abstract:
A communication system that transfers digital data on a fixed frequency channel of a radio frequency band in the presence of interference from at least one FHSS interference source includes a time diversity generation circuit. The time diversity circuit compacts a duration of data frames then replicate the time compressed data frames. The duplicated time compressed frames of data are transmitted to a communication receiver that has a time diversity data recovery circuit. The time diversity data recovery circuit buffers the received compressed and replicated data frames, evaluates whether each of the duplicated time compressed data frames are received correctly. If any one of the duplicated time compressed data frames is destroyed, the copy of the destroyed duplicated time compressed data frame is used to recover the data frame.
Abstract:
Disclosed is a system and method for channel decoding speech frames in a receiver capable of multiple (M) codec modes, wherein channel encoded speech frames include an inband bit portion and a speech portion. An inband bit decoder decodes the inband bit portion (700) of a received frame to obtain confidence levels associated with each of the M codec modes. Using these confidence levels, the codec modes are ordered from most to least likely. The speech frame is then decoded by a channel decoder using the most likely codec mode (704). A frame determination check (720) is performed to determine the quality of the decoded speech frame. If the decoded speech frame is determined to be of poor quality, then the channel decoding process is repeated using the next most likely codec mode (736) corresponding to the next highest inband bit decoding confidence level. This process is repeated until a good speech frame is decoded or some exit criteria is reached.
Abstract:
A system and method for detecting discontinuous transmission (DTX) frames. The inventive method includes the steps of receiving data transmitted in a plurality of frames; classifying each of the frames; analyzing the classification of a number of successive frames of the received data and providing a metric with respect thereto; and determining, in response to the metric, if a frame is a discontinuous frame. In the illustrative embodiment, the step of classifying includes the step of error checking the frames using a cyclic redundancy check (CRC) error checking protocol. The received frames are classified as good frames (G), erasure frames (E), or discontinuous frames (D). A numerical value is assigned to each of the frames based on the classification thereof. Next, the frames are filtered to provide an output Yn=Yn−1+Xn where ‘n’ is a frame number, Yn is the filter output for a given frame n, Yn−1 is the filter output for a previous frame, and Xn is a stream of input frames. A threshold is set for the output Yn to facilitate the detection of discontinuous frames. That is, a detection of a discontinuous transmission frame is indicated when a frame is classified as an ‘erasure’ and the filter output exceeds the threshold. On the detection of a discontinuous frame, the classification of the frame is changed from ‘erasure’ to ‘discontinuous’. By reclassifying improperly classified erasure frames, the mobile receiver is inhibited from requesting retransmission of the frames or a change in the transmit power level. Consequently, network throughput and capacity are optimized and system power is conserved.
Abstract:
Apparatus, and an associated method, for generating a message summary field. The message summary field indicates whether 802.11-formatted data packets are communicated upon a frequency range to which a mobile station operable in an IEEE 802.11 radio communication system is tuned. An indicator indicates whether an 802.11 data packet is detected. And, a reporter generates a measurement summary which includes a measurement summary field populated with a value indicating the determination. Subsequent analysis of the value of the field of the measurement summary is utilized pursuant to dynamic frequency selection operations.
Abstract:
A received information signal is decoded to obtain the received information and to produce at least one feature of the received information signal. The received information signal is preliminary classified as containing a normal burst or a truncated burst based upon the at least one feature, to obtain a preliminary classification. Cyclic redundancy checking of the received information that is decoded is performed. The received information signal is then further classified as containing a normal burst or a truncated burst based upon the preliminary classification and whether the cyclic redundancy checking is valid, to obtain a further classification. The received information signal may be still further classified as containing a normal burst or a truncated burst based upon the further classification and at least one transition rule for normal bursts and truncated bursts between the received information signal and a previously received information signal.
Abstract:
There is provided a receiver comprising a processing unit, a communications unit for receiving frames including training sequence symbols or pilot symbols, the processing unit being configured to use Cyclic Redundancy Check for detecting errors in the received frames. When no errors in a given frame are discovered on the basis of the Cyclic Redundancy Check, the processing unit is further configured to define a TSC, training sequence code, bit error rate for the bursts of the given frame on the basis of the training sequence symbols or the pilot symbols; to define an upper limit for the TSC bit error rate; and to determine the given frame to be bad when the TSC bit error rate for the bursts of the given frame is greater than the upper limit of the TSC bit error rate.
Abstract:
A network processor or other type of processor includes first classification circuitry, scheduling circuitry and second classification circuitry. The first classification circuitry is configured to determine for a given packet received by the processor whether the packet has one or more errors. The scheduling circuitry in an illustrative embodiment receives an indication of the error determination made by the first classification circuitry, and based on the indication controls the dropping of the given packet from the processor memories if the packet has one or more errors, e.g., via a flush transmit command. The second classification circuitry, which may be implemented as a single classification engine or a set of such engines, may be configured to perform at least one classification operation for the given packet, e.g., if the packet is supplied thereto by the scheduling circuitry.
Abstract:
A method for identifying a bad GSM speed frame and simultaneously maintaining a frame erasure rate below a specified value. The method is based upon a joint use of four signal quality metrics: (1) frame CRC parity check; (2) estimated burst signal-to-noise ratio; (3) estimated frame bit error count; and (4) stealing flag values of a frame. Another feature includes providing an improved estimated burst signal-to-noise ratio.