Abstract:
A motion estimation method and device are provided for processing images to be inserted, between a preceding original image and a following original image, into a sequence of images. Each image is divided into pixel blocks associated with motion vectors. For a current block of an image being processed, motion vectors associated with blocks of the image being processed and/or associated with blocks of a processed image are selected. Candidate vectors are generated from selected motion vectors. An error is calculated for each candidate vector. A penalty is determined for a subset of candidate vectors on the basis of the values of the pixels of the pixel block in the preceding original image from which the candidate motion vector points to the current block and/or on the basis of the values of the pixels of the pixel block in the following original image to which the candidate motion vector points from the current block.
Abstract:
A method is provided for fabricating an integrated circuit. According to the method, hollow isolating trenches are produced within a substrate, and active components are produced in and on active areas of the substrate that are between the trenches. The trenches are produced in an initial phase carried out before production of the active components and a final phase carried out after production of the active components. In the initial phase, trenches are formed in the substrate, and the trenches are filled with a fill material. In the final phase, the active components are encapsulated, accesses are created through the encapsulation material to each filled trench, the fill material is removed through each access, and the opening of each trench is plugged through the corresponding access. Also provided is an integrated that includes hollow isolating trenches within a substrate.
Abstract:
A differential amplifier having a first and second output terminals and receiving an input signal at an input terminal. The amplifier comprises a first amplifier having a first input connected to the input terminal, a second input and a first output connected together to the first output terminal, and a second output connected to the second output terminal, the first amplifier reproducing the input signal on the first output. The amplifier comprises a second amplifier having a first input receiving a reference signal and a second input connected to the output terminals by resistive elements and controlling the provision by the first amplifier on the second output of a signal such that the signals received at the first and second inputs of the second amplifier are equal.
Abstract:
In a calibration phase for a tuner of the DZIF type, N calibration frequency signals are generated at an input of a filter. The N calibration frequency signals have N calibration frequencies corresponding respectively after transposition to N analysis frequencies at an input of a Fourier transform. An amplitude and a phase of a corresponding point at an output of the Fourier transform are calculated for each analysis frequency. In a reception phase, each of the outputs of the Fourier transform is corrected with an inverse of the corresponding amplitude and opposite the corresponding phase calculated in the calibration phase.
Abstract:
The present invention relates to an RF integrated circuit comprising a frequency synthesizer and a QAM modulator for modulating a baseband signal of frequency FBB, the frequency synthesizer supplying to the QAM modulator an output signal of frequency F1 adjustable with a frequency step ΔF1, for forming a carrier signal of the QAM modulator. According to the present invention, the frequency synthesizer is a Vernier effect frequency synthesizer comprising an auxiliary frequency synthesizer supplying an auxiliary signal of frequency F2 adjustable with a frequency step ΔF2 and a main frequency synthesizer having a phase-locked loop bandwidth at least two times higher than the frequency step ΔF2 of the auxiliary signal.
Abstract:
A memory implementing an incremental address counter is sequentially read. An address jump includes detecting an address jump signal, incrementing the incremental address counter, and reading the content of the memory at the incremented address. The content read at the incremented address is transferred into the incremental address counter, and the content of the memory is read at the address contained in the incremental address counter.
Abstract:
An anti-fuse transistor includes a source, a drain and a well connected together, and a gate. A method for programming the anti-fuse transistor includes applying a reference potential to the gate, and applying a high potential greater than the reference potential to the drain of the anti-fuse transistor. A first access transistor is connected to the anti-fuse transistor. The first access transistor includes a drain connected to the source of the anti-fuse transistor, and a source for receiving the high potential. Applying the high potential to the drain of the anti-fuse transistor includes turning on the first access transistor.
Abstract:
An electrical connection device between two conducting tracks of an integrated circuit comprises a first conducting connection between the two tracks. The device further comprises an additional interface of one of the two tracks, different from the interface of the track with the first connection and different from the lateral interface of the track with an insulating material parallel to the flow direction of the electric current in the track. The additional interface is placed at some distance from the first connection which is substantially less than the width of the track. The additional interface may be obtained by placing at least a second conducting connection between the two tracks, or by placing at least one rib in the track, or by placing notches on at least one of the faces of the track.
Abstract:
The electronic component, comprises an integrated circuit incorporating several separate functional blocks within a semiconductor substrate, and electrostatic discharge protection means. These electrostatic discharge protection means comprise several separate metal discharge rails (GNDi) placed above the substrate (SB) and respectively associated with the plurality of functional blocks (CRi), all these metal discharge rails being mutually unconnected electrically within the integrated circuit (CI) but connected electrically via an electrical connection (FLi) external to the integrated circuit to one and the same ground plane (SLG) forming a ground reference for the electrostatic discharges, this ground plane (SLG) being located outside the integrated circuit (CI), and possibly being a heat slug.
Abstract:
For the encryption of data to be stored in a memory external to a circuit, provision is made to store in the external memory encrypted data words in association with an initialization vector and a key identifier associated with a secret key that has served to encrypt same.