Abstract:
A method for manufacturing a cathode comprises the steps of: a process for applying onto a substrate a fluid mixture comprising polymers or precursors to the polymers, fine particles of electroconductive material or organic metal compound, and solvent; a process for removing the solvent by heating the fluid mixture applied on the substrate, thereby obtaining an electroconductive organic film comprising the polymers and the electroconductive material; and a process for forming a gap at a portion of the electroconductive organic film by applying an electrical current thereto. Accordingly, a simple method for manufacturing cathodes, electron sources, and image forming apparatuses with excellent electron emitting properties can be realized.
Abstract:
An image-forming apparatus of the present invention includes: a vacuum container constituted by disposing in opposition to each other a rear plate with an electron source formed thereon, and a face plate having an image display region provided with at least phosphors for being irradiated with electrons emitted from the electron source to form an image and anodes disposed on the phosphors; anode potential supplying means for supplying an electric potential higher than that of the electron source to the anode; at least one electroconductive member provided at a site outside of the image display region on an inner surface of the face plate; potential supplying means for supplying to the electroconductive member an electric potential at a level between a lowest electric potential of those which are applied to the electron source and an electric potential applied to the anode; first and second resistant members electrically connected between the anode and the electroconductive members, having resistances higher than that of the anode and having different resistances from each other, wherein the anode, the first resistant member, the second resistant member, and the electroconductive member are electrically connected in series.
Abstract:
A plurality of electron-emitting devices carried on a device substrate are arranged vis-a-vis an acceleration electrode carried on a face plate. The device substrate and the face plate, together with side walls disposed therebetween, constitute an envelope the inner space of which is kept under vacuum. A number of spacers are also disposed between the device substrate and the face plate within the inner space. The electric potential Va applied to the acceleration electrode, the distance l between the electron-emitting devices and the corresponding respective spacers, and the distance d between the electron-emitting devices and the acceleration electrode satisfy the relationship, Vanulll2/d2>nullnullVsatnull/(2nullnullnullnull), where null and null are constants determined from several factors and nullVsat is the potential deviation of the spacer surface under charged conditions from that under uncharged conditions.
Abstract:
An image-forming device having, in an envelope, an electron-emitting element, an image-forming member for forming an image by irradiation of an electron beam emitted from the electron-emitting element, and an electroconductive supporting member for supporting the envelope. The potential of the supporting member is controlled to not be higher than the maximum potential applied to the electron-emitting element. The electron-emitting element and the image-forming member can be placed in juxtaposition on the same substrate, an electroconductive substrate can be additionally provided in opposition to the face of the substrate, and the supporting member can be connected electrically to one of the electrodes and also to the electroconductive substrate.
Abstract:
An image display apparatus is provided, in which the generation of discharge can be suppressed and a preferable display image can be obtained. A method of manufacturing an image display apparatus having an airtight container including a rear plate having a plurality of electron-emitting devices and a face plate which is located opposite to the rear plate and has a phosphor and an electroconductive film, includes the steps of, (A) disposing the rear plate having the plurality of electron-emitting devices and the face plate having the phosphor and the electroconductive film such that the rear plate and the face plate are opposite to each other and arranging a plurality of plate shaped spacers between the rear plate and the face plate to assemble the airtighontainer, and (B) applying an electric field between the rear plate and the face plate in a state that the airtight container is slanted such that a longitudinal direction of the plate-shaped spacers is not in vertical to a gravitational direction.
Abstract:
When manufacturing an electron-beam source, an activation is performed to generate activation material at a plurality of electron-emitting devices. The activation is generated by dividing the plurality of electron-emitting devices into plural groups and sequentially applying voltage to each group.
Abstract:
A method and an apparatus of manufacturing an image displaying apparatus comprising an electron source substrate and a phosphor substrate. The electron source substrate is provided with an electron emitting element formed by covering with a container and by applying a voltage to an electronic conductor on the substrate. While, the phosphor substrate is provided with a phosphor thereon. The substrates are subjected to a getter processing and to a seal bonding process under a vacuum condition through a processing chamber, to complete an image forming apparatus. An improvement resides in miniaturizing and simplifying operation, and in greater manufacture speed and mass production.
Abstract:
An electron-emitting apparatus according to the present invention comprises (A) a substrate, which has a first major surface and a second major surface that are positioned opposite each other, (B) an electron-emitting device, which includes a first electrode, to which a first voltage is applied, and a second electrode, to which a voltage Vf is applied, that are mounted, with an intervening interval, on the first major surface, (C) an anode electrode, which is located opposite and at a distance H from the first major surface, (D) first voltage application means, for applying to the second electrode the voltage Vf that is higher than the first voltage, and (E) second voltage application means, for applying to the anode electrode a voltage Va that is higher than the voltage Vf, wherein a space defined between the anode electrode and the electron-emitting device is maintained in a reduced-pressure condition, and wherein, when a value Xs=H*Vf/(&pgr;*Va) is established for a plane that is substantially perpendicular to the first major surface, a width w of the second electrode, in a direction substantially parallel to the first major surface, equals or exceeds 0.5 times the value Xs and is smaller than or equals 15 times the value Xs.
Abstract:
This invention discloses an electron apparatus with electron-emitting devices in which a support member maintains the interval between a first substrate having the electron-emitting devices and a second substrate facing the first substrate. In this arrangement, the support member is made of an insulating material, and of a plurality of electron-emitting devices arranged substantially linearly, two electron-emitting devices adjacent to each other through the support member are arranged at a larger interval than the interval between two electron-emitting devices adjacent to each other without the mediacy of the support member.
Abstract:
A method for manufacturing an electron emission element comprising, between its electrodes, a conductive film having an electron emission section. The method comprising the steps of forming a gap in the conductive film located between the electrodes, and applying a voltage between the electrodes in an atmosphere that has an aromatic compound with a polarity or a polar group and in which the partial pressure ratio of water to the aromatic compound is 100 or less.