Abstract:
A gas turbine engine having at least one spool assembly, the at least one spool assembly including a fan rotor, a compressor disposed downstream of the fan rotor, a turbine and a shaft connecting the fan rotor, compressor and turbine, a joint affixed to an upstream end of the shaft, and including a first link connecting the fan rotor to the shaft and a second link connecting the compressor to the shaft, the second link being less rigid then the first link.
Abstract:
A method of applying a nanocrystalline coating to a gas turbine engine component is described. The method comprises the steps of applying an intermediate bond coat to at least a portion of the component, and then applying the nanocrystalline coating to at least the portion of the component overtop of the intermediate bond coat. The component may include, for example, a blade of which a dovetail portion of the blade root is protected by applying the intermediate bond coat and the nanocrystalline coating thereto.
Abstract:
A vane assembly of a gas turbine engine includes a plurality of circumferentially spaced vanes extending radially between an outer case and an inner case. A spring-tensioned stator restraining strap is provided around the outer case and surrounding outer ends of the respective vanes. The outer ends of the vanes are received in corresponding openings defined in the outer case and project radially outwardly from the outer case. The spring-tensioned strap compresses the respective vanes radially and inwardly in position.
Abstract:
A fan blade platform assembly comprises a plate insert shaped and dimensioned to span a gap formed between the opposed facing platforms of adjacent fan blades of a turbo fan engine. The plate insert can be retained in engagement under arresting shoulders provided on the adjacent fan blades by a spring force exerted by a spring insert held captive and in contact between the plate insert and an outer surface of the fan hub.
Abstract:
A casing for a gas turbine includes a construction providing improved structural efficiency. Improved load paths and means for transmitting loads in the engine case are disclosed.
Abstract:
The method is used for making an annular gas turbine engine case, the method comprises flowforming a first area of the preform to provide a first annular case portion having a first thickness and a second area having a second thickness, the first and the second average thickness being different.
Abstract:
A gas turbine engine has a compressor assembly and a turbine assembly rotationally mounted on a shaft, the turbine assembly being driven by hot gases discharged from a combustion chamber disposed between the compressor and turbine assemblies and an engine case encasing a portion of the engine, the case having an oblong bleed hole having a major axis parallel to a gaspath direction and a minor axis perpendicular to the gaspath direction.
Abstract:
A casing for an aircraft turbine bypass engine comprises a splitter having slots to receive and be welded to a plurality of struts extending between an outer ring and an inner hub of the casing.
Abstract:
A compressor bleed valve system for bleeding air from a gas turbine engine compressor comprises a bladder inflatable between at least a collapsed position and an expanded position for selectively opening and closing a compressor airbleed passage.
Abstract:
A casing for a gas turbine includes a construction providing improved structural efficiency. Improved load paths and means for transmitting loads in the engine case are disclosed.