Abstract:
A method for compensating camera movement solves the problem of the captured image becoming blurred due to involuntary camera movement in the following way. Firstly, a camera with a look-up table is provided. Next, after a trigger signal is received, the camera movement and the environmental brightness are detected to generate a movement value and a brightness index. A compensation mode and a set of parameters that correspond to the movement value and the brightness index are selected from the look-up table. Finally, when an image-capturing signal is received, the movement compensation modules of the camera are driven by referring to the compensation mode and the parameters to capture a sharp image in a best mode.
Abstract:
An optimum image selection method for a digital photograph device selecting an optimum image by driving a vibration detection sensor mechanism is provided. In continuous photography mode, as soon as capturing an image, it detects and records the vibration amount of the image, and then compares the presently detected vibration amount with the vibration amount of the image which is stored formerly, and if the vibration amount detected presently is smaller, the image captured presently will be stored, so the clearest image will be distinguished and retained immediately by using the vibration amount.
Abstract:
A system for remote monitoring and surveillance is disclosed in this invention. The system comprises a plurality of cameras, a router, and a server. The cameras are connected with the router separately through a wired or wireless communication protocol. The router is connected with the server through a wireless communication protocol. The cameras capture scenes and convert the captured scenes into a plurality of image signals. The router uses a communication protocol to connect with the cameras, and the router transmits the image signals by a first wireless communication protocol. The server receives the image signals by the first wireless communication protocol, processes the image signals to obtain first images, and displays the first images. A method for remote monitoring and surveillance is also disclosed in this invention.
Abstract:
A system for video transmission using 3G mobile network includes a mobile video transmitter and a server. The mobile video transmitter is capable of transmitting a plurality of video packets via a plurality of uplink channels of the 3G mobile network. The mobile video transmitter includes a data splitter that is capable of splitting the video packets; a plurality of transmitting devices coupled to the data splitter, each of the transmitting devices having a transceiver. The data splitter assigns the video packets to the transmitting devices using a water filling method such that the video packets waiting for lo transmission in each of the transmitting devices are equal. The server receiving the video packets via the 3G mobile network is capable of sequencing and combining the video packets into a video signal. A method using the foregoing system for video transmission using 3G mobile network is also provided.
Abstract:
Provided is a micro-electromechanical systems switch for controlling signal delivery in a high frequency band wireless communication and a radio frequency (RF) system and, comprising: a substrate; a signal line formed on the substrate and having a predetermined opening portion; at least one supporting frame each formed on the substrate at both sides of the signal line; a ground line formed on the substrate between the supporting frame and the signal line; a moving plate fixed to the supporting frame at both sides thereof, the moving plate being movable upward and downward; a switching unit positioned on the moving plate, the switching unit comprising contact means for connecting the opened signal line; and a supporting layer for supporting the moving plate and the switching unit, wherein the supporting layer comprises a support protrusion portion for maintaining a distance from the substrate.
Abstract:
A CMOS image sensor capable of improving characteristics of the image sensor by preventing damage to a photodiode region and a method for manufacturing the same are provided. The CMOS image sensor includes: a semiconductor substrate on which a device isolation region and an active region are defined; a photodiode region formed at the active region; a conductive plug formed on the photodiode region for connecting the photodiode region to a metal wiring; and a transistor formed enclosing the conductive plug.
Abstract:
A CMOS (complementary metal oxide semiconductor) image sensor and method of fabricating the same is provided. The CMOS image sensor can include: a semiconductor substrate in which an active region and a device isolation region are defined; a photodiode region including a first region and a second region extending from the first region formed on the active region, wherein impurity ions of a first conductivity type and impurity ions of a second conductivity type are implanted in the first region, and impurity ions of the first conductivity type are implanted in the second region; and a transistor and an impurity diffusion region of a first conductivity type formed on a transistor region of the active region.
Abstract:
Disclosed are a CMOS image sensor and a manufacturing method thereof. The method includes the steps of: forming an isolation layer on a semiconductor substrate, defining an active region that includes a photo diode region and a transistor region; forming a gate in the transistor region, the gate including a gate electrode and a gate insulating layer; forming a first low-concentration diffusion region in the photo diode region; forming a second low-concentration diffusion region in the transistor region; forming a buffer layer over the substrate, the buffer layer covering the photo diode region; forming first and second insulating layers over the entire surface of the substrate, the first and second insulating layer having a different etching selectivity from each other; forming an insulating sidewall on sides of the gate electrode by selective removal of the second insulating layer; removing the first insulating layer from the transistor region; forming a high-concentration diffusion region in the exposed transistor region, partially overlapping the second low-concentration diffusion region; and forming a metal silicide layer on the high-concentration diffusion region.
Abstract:
An organic thin film transistor includes a dual gate electrode on a substrate, a gate insulating layer on the dual gate electrode, source and drain electrodes on the gate insulating layer, and an organic semiconductor layer on the source and drain electrodes.
Abstract:
An optical fiber for long-distance optical communication networks has a zero dispersion wavelength value in the range of 1560 to 1570 nm and a dispersion gradient value, at a wavelength band of 1550 nm, in the range of 0.055 to 0.075 ps/nm2/km.