Abstract:
An integrated circuit (IC) chip includes a first memory cell array block having a first metal layer containing at least two power lines, and a second memory cell array block containing at least two power lines independent of each other, wherein all the power lines on the first metal layer serving the first memory cell array block do not extend into the second memory cell array block, and all the power lines on the first metal layer serving the second memory cell array block do not extend into the first memory cell array block.
Abstract:
An integrated circuit device includes a first word-line; a second word-line; a first bit-line; and a static random access memory (SRAM) cell. The SRAM cell includes a storage node; a pull-up transistor having a source/drain region coupled to the storage node; a pull-down transistor having a source/drain region coupled to the storage node; a first pass-gate transistor comprising a gate coupled to the first word-line; and a second pass-gate transistor including a gate coupled to the second word-line. Each of the first and the second pass-gate transistors includes a first source/drain region coupled to the first bit-line, and a second source/drain region coupled to the storage node.
Abstract:
A method of resizing an image having a plurality of data unit blocks is disclosed. Each data unit block is a pixel matrix. The method includes the steps of generating column pseudo-pixel matrix corresponding to a data unit block, decimating/interpolating the data unit block in column direction to generate a scaled column-pixel matrix, filtering the scaled column-pixel matrix and the column pseudo-pixel matrix to generate a filtered column-pixel matrix, storing the filtered column-pixel matrix in a first buffer, generating a row pseudo-pixel matrix corresponding to the filtered column-pixel matrix stored in the first buffer, decimating/interpolating each the filtered column-pixel matrix to generate a scaled row-pixel matrix, and filtering the scaled row-pixel matrix and the row pseudo-pixel matrix to generate a resized row-pixel matrix.
Abstract:
A circuit and method for providing a two phase word line pulse for use during access cycles in an SRAM memory with improved operating margins. A first and a second timing circuit are provided and a word line voltage suppression circuit is provided to reduce the voltage on the active word lines in a first phase of a word line pulse, and to allow the word lines to rise to a second, unsuppressed voltage in a second phase of the word line pulse, responsive to the first and second timing circuits. The first and second timing circuits observe the bit lines voltage discharge and provide control signals active when the bit lines are discharged past certain thresholds, these signals control the voltage suppression circuit. Operating margins for the SRAM are therefore improved. Methods for operating an SRAM using a two phase word line pulse are provided.
Abstract:
This invention discloses an integrated circuit, which comprises a first and a second pull-down circuit controlled by a first and second signal, respectively, and coupled between a first node and a low voltage power supply (Vss), and a controllable pull-up circuit coupled between the first node and a complimentary high voltage power supply (Vcc), wherein when either the first or second signal is asserted to a predetermined logic state, the first node is pulled down to a logic LOW state.
Abstract:
This invention discloses an integrated circuit, which comprises a first and a second pull-down circuit controlled by a first and second signal, respectively, and coupled between a first node and a low voltage power supply (Vss), and a controllable pull-up circuit coupled between the first node and a complimentary high voltage power supply (Vcc), wherein when either the first or second signal is asserted to a predetermined logic state, the first node is pulled down to a logic LOW state.
Abstract:
An integrated circuit includes a positive power supply node, a current tracking circuit, and a current mirroring circuit including a plurality of current paths coupled in parallel. The currents of the plurality of current paths mirror a current of the current tracking circuit. The current mirroring circuit is configured to turn off the plurality of current paths one-by-one in response to a reduction in a positive power supply voltage on the positive power supply node. The integrated circuit further includes a charging node receiving a summation current of the plurality of current paths, wherein a voltage on the charging node is configured to increase through a charging of the summation current.
Abstract:
A sensing amplifier for a memory device includes first and second nodes, an input device and an output device. The memory device includes first and second bit lines, and at least one memory cell coupled to the bit lines. The first and second nodes are coupled to the first and second bit lines, respectively. The input device is coupled to the first and second nodes and generates a first current pulling the first node toward a predetermined voltage in response to a first datum read out from the memory cell, and to generate a second current pulling the second node toward the predetermined voltage in response to a second datum read out from the memory cell. The output device is coupled to the first node to output the first or second datum read out from the memory cell. The first current is greater than the second current.
Abstract:
A semiconductor memory chip that has word lines driven by respective word line drivers and bit lines to carry signals to respective bit line amplifiers/drivers with memory cells at intersections of the word lines and bit lines memory cells. The semiconductor memory chip including various memory cell types, the type of memory cell at an intersection based on a position of the intersection among the word lines and bit lines.
Abstract:
A guard ring system is disclosed for protecting an integrated circuit comprising. It has a first guard ring area formed by a well in the substrate, a capacitor area formed within the first guard ring area which further includes two well contacts formed into the well and biased by a first supply voltage, and a dielectric layer placed between the two contacts on the well with its first side in contact with the well. A second supply voltage complementary to the first supply voltage is applied to a second side of the dielectric layer so that a voltage difference across the dielectric layer provides a local capacitance embedded therein.