Abstract:
Ear-level full duplex audio communication systems each include one or two ear attachment devices, such as in-the-ear (ITE) or behind-the-ear (BTE) devices, that wirelessly communicates to a remote device such as a computer, a personal digital assistant (PDA), a cellular phone, a walkie talkie, or a language translator. When used as a hearing aid, such a system allows a hearing impaired individual to communicate with or through the remote device, such as to talk to another person through a cellular phone. When being used as an ear piece wirelessly extended from the remote device, such system allows an individual with normal hearing to privately communicate with or through the remote device without the need of holding the device or wearing any device wired to the remote device. Each ear attachment device includes a voice operated exchange (VOX), housed within the device, to preserve energy and hence, maximize the period between battery replacement or recharges. The VOX also gates various sounds detected by the system to control possible echoes and ringing.
Abstract:
Systems, devices and methods are provided for diotically presenting second-order gradient directional hearing aid signals. The present subject matter provides an improved signal-to-noise ratio, and presents a desired directional signal to each ear. One aspect is a hearing aid system. In one embodiment, the system includes a first microphone system in a first device and a second microphone system in a second device. The first microphone system has a first output signal, and the second microphone system has a second output signal. Each output signal includes a first-order directional signal. The system further includes a first receiver circuit and a second receiver circuit. The combination of the first output signal and the second output signal provides a diotic presentation of a second-order gradient signal to both the first receiver circuit and the second receiver circuit. Other aspects are provided herein.
Abstract:
A system for programming one or more hearing aids with a host computer, the system including a hearing aid programmer for wireless communications with the host computer. In various embodiments, the hearing aid programmer has at least one interface connector for communication with at least one hearing aid. Additionally, in various embodiments, the system includes a wireless interface adapted for connecting to the at least one interface connector of the hearing aid programmer, the wireless interface further adapted for wireless communication with one or more hearing aids. Varying embodiments of the present subject matter include a wireless interface which contains signal processing electronics, a memory connected to the signal processing electronics; and a wireless module connected to the signal processing electronics and adapted for wireless communications.
Abstract:
A hearing aid programming system with a host computer for providing at least one hearing aid program and having at least one personal computer memory card international association (PCMCIA) defined port in combination with a PCMCIA card inserted in the port and arranged for interacting with the host computer for controlling programming of a hearing aid. The host computer provides power and ground to the PCMCIA card and provides for downloading the hearing aid programming software to the PCMCIA card upon initialization. A microprocessor on the PCMCIA card executes the programming software. A portable programming arrangement utilizes a portable multiprogram unit to store one or more hearing aid programs which may be downloaded from the host computer. The portable multiprogram unit includes a wireless interconnection for transmitting selected ones of the programs to hearing aids to be programmed.
Abstract:
Abstract of the Disclosure Systems, devices and methods are provided for diotically presenting second-order gradient directional hearing aid signals. The present subject matter provides an improved signal-to-noise ratio, and presents a desired directional signal to each ear. One aspect is a hearing aid system. In one embodiment, the system includes a first microphone system in a first device and a second microphone system in a second device. The first microphone system has a first output signal, and the second microphone system has a second output signal. Each output signal includes a first-order directional signal. The system further includes a first receiver circuit and a second receiver circuit. The combination of the first output signal and the second output signal provides a diotic presentation of a second-order gradient signal to both the first receiver circuit and the second receiver circuit. Other aspects are provided herein.
Abstract:
An improved hearing-related analysis programming system with a host computer for providing at least one hearing aid program and having at least one personal computer memory card international association (PCMCIA) defined port in combination with a PCMCIA Card inserted in the port and arranged for interacting with the host computer for controlling hearing-related analysis or programming of a hearing aid. The host computer provides power and ground to the PCMCIA Card and provides for downloading the hearing aid programming software to the PCMCIA Card upon initialization. A microprocessor on the PCMCIA Card executes hearing-related analysis or the programming software. A hearing aid interface for adjusting voltage levels and impedance levels is adapted for coupling signals to the hearing aid being programmed. Systems for performing hearing-related analysis include a portable audiometer system on a PCMCIA Card and operable with a portable host computer to analyze hearing of a patient, and a real-ear system on a PCMCIA Card and operable with a portable host computer to analyze output from a hearing aid in a patient's ear.
Abstract:
Apparatus for use as an in-the-ear hearing aid. The apparatus includes a housing having a shell and a face plate, wherein the shell is molded to custom fit a hearing aid user's ear. A first non-directional microphone system is included having a first output signal representative of the sound received. A second non-directional microphone system is included having a second output signal representative of the sound received. A switch mechanism is included having an operator extending through the housing for switching the in-the-ear hearing aid between a non-directional mode and a directional mode. In the directional mode, the microphone system is adjustable between a cardioid and super cardioid polar output pattern.
Abstract:
A signal processing circuit for hearing aids includes a broadband peak detector for generating a control voltage based upon the sound pressure level of an incoming acoustical signal over its entire frequency spectrum. The control signal is used to determine the cut-off frequency of a voltage controlled adaptive high-pass filter. An amplified electrical signal, corresponding to the acoustical signal, also is provided to the high-pass filter. In setting the cut-off frequency, the control voltage causes the high-pass filter to selectively suppress the low frequency portion of the signal, generating a modified signal in which the noise component is reduced.
Abstract:
Disclosed herein, among other things, are apparatus and methods to provide improved control of hearing assistance devices and hearing assistance applications. The present apparatus and method can be deployed on a hearing aid, a device in communication with the hearing aid, or on both. In one embodiment a programmable control, including, but not limited to a button or switch or sensor or microphone is adapted to provide control of the function or settings of the hearing aid. In one embodiment, a programmable control for a device including, but not limited to a button or switch or sensor or microphone is adapted to provide wireless control of the function or settings of the hearing aid. In various embodiments, a programmable control for the hearing aid and a programmable control of the device are used to provide wireless control of the function or settings of the hearing aid.
Abstract:
Ear-level full duplex audio communication systems each include one or two ear attachment devices, such as in-the-ear (ITE) or behind-the-ear (BTE) devices, that wirelessly communicates to a remote device such as a computer, a personal digital assistant (PDA), a cellular phone, a walkie talkie, or a language translator. When used as a hearing aid, such a system allows a hearing impaired individual to communicate with or through the remote device, such as to talk to another person through a cellular phone. When being used as an ear piece wirelessly extended from the remote device, such system allows an individual with normal hearing to privately communicate with or through the remote device without the need of holding the device or wearing any device wired to the remote device. Each ear attachment device includes a voice operated exchange (VOX), housed within the device, to preserve energy and hence, maximize the period between battery replacement or recharges. The VOX also gates various sounds detected by the system to control possible echoes and ringing.