Abstract:
An apparatus for compressing a coiled stent having at least one protrusion, such as an enlarged coil disposed at the end of the stent, has a mandrel insertable into a lumen of the stent for holding the stent by friction and a coil compressor coupled to the mandrel. The mandrel is rotatable on an axis relative to the coil compressor and the coil compressor has a tab extending therefrom towards the mandrel. A stent is placed on the mandrel with the enlarged coil extending toward the coil compressor. The tab presses the enlarged coil inwardly toward the lumen of the stent when the mandrel is rotated relative to the coil compressor.
Abstract:
A graft ligament anchor comprises a graft ligament engagement member disposed in an opening in a bone, the graft ligament engagement member being arranged to receive a graft ligament alongside the engagement member, and a locking member for disposition in the opening, and at least in part engageable with the graft ligament engagement member. Movement of the locking member in the opening causes the locking member to urge the engagement member, and the graft ligament therewith, toward a wall of the opening, to secure the graft ligament to the wall of the opening. A method for attaching a graft ligament to a bone comprises providing an opening in the bone, inserting the graft ligament and a graft ligament engagement member in the opening, with the graft ligament disposed alongside a first portion of the engagement member, and inserting a locking member in the bone alongside a second portion of the engagement member, the locking member being separated from the graft ligament by the graft ligament engagement member. The method further comprises moving the locking member to cause the locking member to engage the graft ligament engagement member to urge the graft ligament engagement member, and the graft ligament therewith, toward a wall of the opening to secure the graft ligament to the wall of the opening.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
Abstract:
This invention relates generally to expandable intraluminal medical devices for use within a body passageway or duct, and more particularly to an optimized stent having asymmetrical strut and loop members, wherein at least one pair adjacent radial strut members have unequal axial lengths.
Abstract:
A graft ligament anchor comprises a graft ligament engagement member disposed in an opening in a bone, the graft ligament engagement member being arranged to receive a graft ligament alongside the engagement member, and a locking member for disposition in the opening, and at least in part engageable with the graft ligament engagement member. Movement of the locking member in the opening causes the locking member to urge the engagement member, and the graft ligament therewith, toward a wall of the opening, to secure the graft ligament to the wall of the opening. A method for attaching a graft ligament to a bone is also provided.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics. The stent has a plurality of hoop components interconnected by at least one flexible connector. The hoop components are formed as a continuous series of alternating substantially longitudinally oriented strut members and connector junction struts, whereas the longitudinal strut is connected to the connector junction strut by alternating substantially circumferentially oriented arc members.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.