Abstract:
A graft ligament anchor comprises a graft ligament engagement member disposed in an opening in a bone, the graft ligament engagement member being arranged to receive a graft ligament alongside the engagement member, and a locking member for disposition in the opening, and at least in part engageable with the graft ligament engagement member. Movement of the locking member in the opening causes the locking member to urge the engagement member, and the graft ligament therewith, toward a wall of the opening, to secure the graft ligament to the wall of the opening. A method for attaching a graft ligament to a bone comprises providing an opening in the bone, inserting the graft ligament and a graft ligament engagement member in the opening, with the graft ligament disposed alongside a first portion of the engagement member, and inserting a locking member in the bone alongside a second portion of the engagement member, the locking member being separated from the graft ligament by the graft ligament engagement member. The method further comprises moving the locking member to cause the locking member to engage the graft ligament engagement member to urge the graft ligament engagement member, and the graft ligament therewith, toward a wall of the opening to secure the graft ligament to the wall of the opening.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics. The stent has a plurality of hoop components interconnected by a plurality of flexible connectors. The hoop components are formed as a continuous series of substantially longitudinally or axially oriented radial strut members and alternating substantially circumferentially oriented radial arc members. The geometry of the struts and arcs is such that when the stent is expanded, it has very high strains within a relatively small region. This strain localization results in what is often referred to as “hinging”, where the hinge is the small region within which the strains are very high.
Abstract:
A graft ligament anchor comprises a graft ligament engagement member disposed in an opening in a bone, the graft ligament engagement member being arranged to receive a graft ligament alongside the engagement member, and a locking member for disposition in the opening, and at least in part engageable with the graft ligament engagement member. Movement of the locking member in the opening causes the locking member to urge the engagement member, and the graft ligament therewith, toward a wall of the opening, to secure the graft ligament to the wall of the opening. A method for attaching a graft ligament to a bone comprises providing an opening in the bone, inserting the graft ligament and a graft ligament engagement member in the opening, with the graft ligament disposed alongside a first portion of the engagement member, and inserting a locking member in the bone alongside a second portion of the engagement member, the locking member being separated from the graft ligament by the graft ligament engagement member. The method further comprises moving the locking member to cause the locking member to engage the graft ligament engagement member to urge the graft ligament engagement member, and the graft ligament therewith, toward a wall of the opening to secure the graft ligament to the wall of the opening.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. The polymeric materials may include additives such as drugs or other bioactive agents as well as radiopaque agents. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics. The stent has a plurality of hoop components interconnected by a plurality of flexible connectors. The hoop components are formed as a continuous series of substantially longitudinally or axially oriented radial strut members and alternating substantially circumferentially oriented radial arc members. The geometry of the struts and arcs is such that when the stent is expanded, it has very high strains within a relatively small region. This strain localization results in what is often referred to as “hinging”, where the hinge is the small region within which the strains are very high.
Abstract:
A graft ligament anchor comprises a graft ligament engagement member disposed in an opening in a bone, the graft ligament engagement member being arranged to receive a graft ligament alongside the engagement member, and a locking member for disposition in the opening, and at least in part engageable with the graft ligament engagement member. Movement of the locking member in the opening causes the locking member to urge the engagement member, and the graft ligament therewith, toward a wall of the opening, to secure the graft ligament to the wall of the opening. A method for attaching a graft ligament to a bone is also provided.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.
Abstract:
A biocompatible material may be configured into any number of implantable medical devices including intraluminal stents. Polymeric materials may be utilized to fabricate any of these devices, including stents. The stents may be balloon expandable or self-expanding. By preferential mechanical deformation of the polymer, the polymer chains may be oriented to achieve certain desirable performance characteristics.