Abstract:
Systems and methods for manufacturing pellets are disclosed herein. The systems and methods can include improved drying systems and techniques. In some embodiments, for example, the systems and methods can make use of one or more vacuum dryers and various other improvements related thereto.
Abstract:
A solid face die plate for an underwater pelletizer includes a carrier or holding plate having a circular slot for holding a hard anti-wear element of highly wear-resistant material through which the extrusion orifices open for extruding polymer. The solid face die plate eliminates the need for insulation or plugging material in the center of the die plate and, by embedding the hard anti-wear element within the carrier, protects the edges of the hard anti-wear element for longer wear life.
Abstract:
Certain polyamide beads or granules are useful as a sustaining material for underground natural or artificial cracks of the earth's crust essentially employed for the extraction of hydrocarbons such as crude oil or natural gas; such polyamide beads have a spherical or ellipsoidal shape and have a surface free of concave portions, advantageously having a uniform shape, and having a mean diameter lower than or equal to 1.7 mm and a porosity lower than 0.1 ml/g, and are produced using a particular cutting device/extruder.
Abstract:
A method and apparatus for underwater pelletizing and subsequent drying of crystallizing polymers to crystallize the polymer pellets with out subsequent heating is shown in FIG. 5. High velocity air or other inert gas is injected into the water and pellet slurry line (120) toward the dryer near the pelletizer exit (102) at a flow rate from about 100 to about 175 m3/hour, or more. Such high-speed air movement forms a vapor mist with the water and significantly increases th speed of the pellets into and out of the dryer such that the polymer pellets leave the dryer with sufficient latent heat to cause self-crystallization within the pellets. A valve mechanism in the slurry line (150) after the gas injection further regulates the pellet residence time and a vibrating conveyor after the dryer helps the pellets to achieve the desired level of crystallinity and to avoid agglomeration.
Abstract:
Improved devices, systems, and methods for drying pellets in a pellet-fluid slurry are disclosed. The system can provide a desired moisture level and output rate for the dried pellets. The system can use two dryers in series to remove moisture from the pellets in the pellet-fluid slurry. The two dryers can be connected with a transport pipe. The transport pipe can include a diverter valve to bypass the second dryer when desired. The transport pipe can also include a blower and/or heater to aid in the transport and drying of the pellets. The first dryer, the second dryer, or both can include a defluidizing section. The first dryer can be located at a higher level than the second dryer to facilitate movement of pellets from the first dryer to the second dryer.
Abstract:
A method and apparatus for underwater pelletizing and subsequent drying of crystallizing polymers to crystallize the polymer pellets with out subsequent heating is shown in FIG. 5. High velocity air or other inert gas is injected into the water and pellet slurry line (120) toward the dryer near the pelletizer exit (102) at a flow rate from about 100 to about 175 m3/hour, or more. Such high-speed air movement forms a vapor mist with the water and significantly increases th speed of the pellets into and out of the dryer such that the polymer pellets leave the dryer with sufficient latent heat to cause self-crystallization within the pellets. A valve mechanism in the slurry line (150) after the gas injection further regulates the pellet residence time and a vibrating conveyor after the dryer helps the pellets to achieve the desired level of crystallinity and to avoid agglomeration.
Abstract:
An apparatus and process to maintain control of the temperature of low-melting compounds, high melt flow polymers, and thermally sensitive materials for the pelletization of such materials. The addition of a cooling extruder, and a second melt cooler if desired, in advance of the die plate provides for regulation of the thermal, shear, and rheological characteristics of narrow melting-range materials and polymeric mixtures, formulations, dispersions or solutions. The apparatus and process can then be highly regulated to produce consistent, uniform pellets of low moisture content for these otherwise difficult materials to pelletize.
Abstract:
A tumbler may be used as defluidizer, dryer, coater, classifier, or dynamic filter. The tumbler includes a rotatable drum that receives a solid/fluid slurry through an inlet chute. As the slurry travels through the drum, fluid exits the drum through a plurality of apertures in screens attached to the sides of the drum, while the solids continue along the drum's length until they reach one or more openings and exit the drum into an outlet chute. The outlet chute includes ridges that wrap around rings extending from the openings of the drum to prevent solids from escaping the outlet chute. To further dry the solids before they exit the drum, an air tube at least partially disposed within the drum is configured to introduce a flow of air into the drum.
Abstract:
A die plate is provided for an underwater pelletizer. The die plate includes a die plate body and a solid face plate. The downstream face of the die plate body has a plurality of insulation holes drilled therein that reduce the surface area contact between the die plate body and the solid face plate that is secured to the downstream face of the die plate body to form the cutting surface. In addition, a circular groove is preferably milled into the downstream face of the die plate body. The groove is concentric with the outer perimeter of the die plate body and creates an outer ring and a center boss. The outer downstream surface of the boss is flush with the outer downstream surface of the outer ring so that the boss and ring together form the downstream face of the die plate body for supporting the solid face plate. The insulation holes and groove are filled with a non-reactive atmosphere such as nitrogen, inert gas(es), a vacuum or a partial vacuum.
Abstract:
The present invention relates to a centrifugal pellet dryer comprising a housing accommodating a rotor surrounded by a screen, and a feeding system for feeding a water-pellet-slurry to said rotor, said feeding system including a pre-dewatering system for separating water from said water-pellet-slurry upstream of said rotor. The pre-dewatering system may include a feeding pipe having a dewatering perforation, said pipe being configured to be mounted in different positions to adjust the amount of dewatering.