摘要:
The invention relates to a semiconductor device having a rectifying junction (5) which is situated between two (semiconductor) regions (1, 2) of an opposite conductivity type. The second region (2), which includes silicon, is thicker and has a smaller doping concentration than the first region (1) which includes a sub-region comprising a mixed crystal of silicon and germanium. The two regions (1, 2) are each provided with a connection conductor (3, 4). Such a device can very suitably be used as a switching element, in particular as a switching element for a high voltage and/or high power. In the known device, the silicon-germanium mixed crystal is relaxed, leading to the formation of misfit dislocations. These serve to reduce the service life of the minority charge carriers, thus enabling the device to be switched very rapidly. In a device in accordance with the invention, the entire first region (1) comprises a mixed crystal of silicon and germanium, and the germanium content and the thickness of the first region (1) are selected so that the voltage built up in the semiconductor device remains below the level at which misfit dislocations develop. Surprisingly, it has been found that such a device can also be switched very rapidly, even more rapidly than the known device. The absence of misfit dislocations has an additional advantage, namely that the device is very reliable. Misfit dislocations do not develop if the product of said relative deviation in the lattice constant and the thickness of the first region is smaller than or equal to 40 nm %. A safe upper limit for said product is 30 nm %.
摘要:
In a semiconductor switch device such as an NPN transistor (T) or a power switching diode (D), a multiple-zone first region (1) of one conductivity type forms a switchable p-n junction (12) with a second region (2) of opposite conductivity type. In accordance with the invention, this first region (1) includes three distinct zones, namely a low-doped zone (23), a high-doped zone (25), and an intermediate additional zone (24). The low-doped zone (23) is provided by a semiconductor body portion (11) having a substantially uniform p-type doping concentration (P−) and forms the p-n junction (12) with the second region (2). The distinct additional zone (24) is present between the low-doped zone (23) and the high-doped zone (25). The high-doped zone (25) which may form a contact zone has a doping concentration (P++) which is higher than that of the low-doped zone (23) and which decreases towards the low-doped zone (23). The distinct additional zone (24) has an additional doping concentration (P+) which is lower than the doping concentration (P++) of the high-doped zone (25) and which decreases towards the low-doped zone (23). This triple-zone formation for the first region (1) permits an improvement in switching behaviour, e.g. in terms of fall-time and energy dissipation during turn-off of the device (T, D). A very low doping (P−) can be used for low-doped zone (23) so that, in the off-state of the device (T, D), this zone (23) and also the additional zone (24) can be fully depleted. The additional zone (24) having its additional doping concentration provides a path for extracting residual charge carriers from the low-doped zone (23) when the device (T, D) is being switched off.
摘要:
A semiconductor device with at least one programmable memory cell which includes a bipolar transistor (T.sub.1) with an emitter (11) and a collector (12) of a first conductivity type and a base (10) of a second, opposite conductivity type. The emitter (11) and collector (12) are coupled to a first supply line (100) and a second supply line (200), respectively. The base (10) is coupled to writing means (WRITE) through a control transistor (T.sub.2). Reading means (READ) are included in a current path (I) which extends between the first supply line (100) and the second supply line (200) and which includes a current path between the emitter (11) and collector (12). In a preferred embodiment, the collector (12) is in addition coupled to the second supply line (200) via a switchable load (T.sub.5).