摘要:
The invention relates to a semiconductor device having a rectifying junction (5) which is situated between two (semiconductor) regions (1, 2) of an opposite conductivity type. The second region (2), which includes silicon, is thicker and has a smaller doping concentration than the first region (1) which includes a sub-region comprising a mixed crystal of silicon and germanium. The two regions (1, 2) are each provided with a connection conductor (3, 4). Such a device can very suitably be used as a switching element, in particular as a switching element for a high voltage and/or high power. In the known device, the silicon-germanium mixed crystal is relaxed, leading to the formation of misfit dislocations. These serve to reduce the service life of the minority charge carriers, thus enabling the device to be switched very rapidly. In a device in accordance with the invention, the entire first region (1) comprises a mixed crystal of silicon and germanium, and the germanium content and the thickness of the first region (1) are selected so that the voltage built up in the semiconductor device remains below the level at which misfit dislocations develop. Surprisingly, it has been found that such a device can also be switched very rapidly, even more rapidly than the known device. The absence of misfit dislocations has an additional advantage, namely that the device is very reliable. Misfit dislocations do not develop if the product of said relative deviation in the lattice constant and the thickness of the first region is smaller than or equal to 40 nm %. A safe upper limit for said product is 30 nm %.
摘要:
The invention relates to a so-called punch-through diode with a mesa (12) comprising, in succession, a first (1), a second (2) and a third (3) semiconductor region (1) of, respectively, a first, a second and the first conductivity type, which punch-through diode is provided with two connection conductors (5, 6). During operation of said diode, a voltage is applied such that the second semiconductor region (2) is fully depleted. A drawback of the known punch-through diode resides in that the current flow is too large at lower voltages. In a punch-through diode according to the invention, a part (2A, 2B) of the second semiconductor region (2), which, viewed in projection, borders on the edge of the mesa (12), is provided with a larger flux of doping atoms of the second conductivity type than the remainder (2A) of the second semiconductor region (2). It has been found that the high current at a low voltage of the known diode is caused by the fact that the second semiconductor region (2) at the edge of the mesa (12) is depleted before the remainder of the second semiconductor region (2). By locally increasing the flux of doping atoms, the depletion at the edge is delayed as compared to the remainder of the second semiconductor region. Preferably, this result is obtained by locally increasing the thickness of the second semiconductor region (2). In this manner, a substantial current reduction at lower voltages is obtained in the diode in accordance with the invention.
摘要:
A thermally programmable memory has a programmable element (20) of a thermally programmable resistance preferably of phase change material, material and a blown antifuse (80) located adjacent to the programmable material. Such a blown antifuse has a dielectric layer (100) surrounded by conductive layers (90, 110) to enable a brief high voltage to be applied across the dielectric to blow a small hole in the dielectric during manufacture to form a small conductive path which can be used as a tiny electrical heater for programming the material. Due to the current confinement by the hole, the volume of the material that must be heated in order to switch to a highly-resistive state is very small. As a result the programming power can be low.
摘要:
The invention relates to the manufacture of an epitaxial layer, with the following steps: providing a semiconductor substrate; providing a Si—Ge layer on the semiconductor substrate, having a first depth; —providing the semiconductor substrate with a doped layer with an n-type dopant material and having a second depth substantially greater than said first depth; performing an oxidation step to form a silicon dioxide layer such that Ge atoms and n-type atoms are pushed into the semiconductor substrate by the silicon dioxide layer at the silicon dioxide/silicon interface, wherein the n-type atoms are pushed deeper into the semiconductor substrate than the Ge atoms, resulting in a top layer with a reduced concentration of n-type atoms; removing the silicon dioxide layer; growing an epitaxial layer of silicon on the semiconductor substrate with a reduced outdiffusion or autodoping.
摘要:
The present invention relates to an integrated circuit comprising a plurality of bitlines (b1) and a plurality of word-lines (w1) as well as a plurality of memory-cells (MC) coupled between a separate bit-line/word-line pair of the plurality of bit-lines (b1) and wordlines (w1) for storing data in the memory cell. Each memory cell (MC) comprises a selecting unit (T) and a programmable resistance (R). The value of the phase-change resistance (R) is greater than the value of a first phase-change resistance (Ropt) defined by a supply voltage (Vdd) divided by a maximum drive current (Im) through said first phase-change resistor (Ropt).