Abstract:
A signalling circuit for a signal channel of a communication network comprises a communication network terminal connectable to the signal channel and to a voltage supply; an input terminal connectable to receive a transmit signal; a driver device comprising a first driver terminal connected to the communication network terminal, a second driver terminal connected to ground, and a driver control terminal connected to the input terminal; wherein the driver device is arranged to connect the communication network terminal to ground in response to a transition from a low to a high voltage driver control signal state of a driver control signal received at the driver control terminal. And the signalling circuit comprises a feedback circuit connected to the first driver terminal and the driver control terminal and comprising a capacitive device; and a pull-down device arranged to connect the driver control terminal to ground after a predefined delay after a transition of the transmit signal from a low to a high voltage transmit signal state.
Abstract:
A clock signal generation system is provided that includes a clock signal generating circuit arranged to provide a first clock signal having a selectable first clock rate; a divider circuit connected to receive the first clock signal and arranged to generate, depending on a division factor, a second clock signal from the first clock signal, having a constant second clock rate and being synchronized with the first clock signal; and a controller module connected to the divider circuit and arranged to change the division factor when a different first clock rate is selected, to keep the second clock rate constant and the second clock signal synchronized with the first clock signal.
Abstract:
An electronic device comprises an application circuit; a first supply rail having a first electric potential; a second supply rail having a second electric potential different from the first electric potential; at least one terminal having a third electric potential, connected to the application circuit; and a protection circuit for protecting the application circuit from an injected current. The protection circuit comprises a first conductive line connected between the at least one terminal and the first supply rail, the first conductive line comprising a first switch having a first control input; and a first voltage amplifier circuit having a first input connected to the at least one terminal, a second input connected to the second supply rail and a first output connected to the first control input.
Abstract:
A semiconductor device comprises a substrate provided with a doping of a first type, on which an electronic circuit is provided surrounded by a circuit portion of the substrate provided with a doping of a second type; at least one pad for connecting the electronic circuit to an external device outside the substrate, surrounded by a pad portion provided with a doping of the second type; a sensing device comprising a sensor portion of the substrate provided with a doping of the first type, for sensing a parameter forming a measure for a local electrical potential of the substrate; and an evaluation unit connected to the sensing device, for providing an evaluation signal based on a difference between the parameter and a reference value.
Abstract:
A circuit arrangement for detecting unwanted signals on a clock signal comprises an input for receiving the clock signal, and a Phase Lock Loop PLL circuit having a reference input coupled to the input of the circuit arrangement for receiving the clock signal and an output for providing a PLL output signal. The circuit arrangement further comprises a detector coupled to the output of the PLL circuit and to the input of the circuit arrangement. The detector is arranged to identify correct transitions in the clock signal using the PLL output signal, and to remove incorrect transitions due to unwanted signals from the clock signal so as to provide a filtered clock signal at an output of the circuit arrangement.