Abstract:
Providing for improved network event tagging for mobile communications is described herein. By way of example, a mobile network can be configured to take periodic geographic positions of a mobile terminal operating within the mobile network. Network events occurring between the periodic geographic positions, otherwise partially unknown in position, can be estimated by referencing topographical information and estimating a route of travel of the mobile device. Estimated speed of the mobile device can be utilized to place the mobile device on a road network, cycling route, pedestrian walkway, or the like, and refine the estimated position of the mobile device at the time of the network event. Such estimates can be refined from traffic information or other real-time travel data. An estimated position of the mobile device can be output as an approximation of the network event to facilitate event modeling for the mobile network.
Abstract:
Systems and methods disclosed herein can implement a femtocell calibration solution that uses the known location of the femtocell to calibrate timing based locating systems. The calculated time differences of different signals sent between macrocells and a mobile device can be used to solve for a reference time difference that accounts for the timing differences of the unsynchronized macrocells. The reference time difference can then be used to solve for the location of another mobile device if the calculated time differences between that mobile device and the macrocells are known. The solution can include taking many measurements of the calculated time difference at the first mobile device in order to average them to get a more accurate reference time difference. The solution can further include ceasing measurements at the first mobile device when the mobile device is no longer within range of the femtocell.
Abstract:
Determining levels of geographic redundancy among radios of a wireless radio network is described. The level of geographic redundancy for a radio can affect the determination of location information for a user equipment (UE) on the wireless radio network. The disclosed subject matter can be employed in conjunction with timed fingerprint location (TFL) technologies to facilitate selection of radios employed in determining time values for TFL location determination. Levels of geographic redundancy can be employed to rank or order radios of a wireless radio network so as to reduce the likelihood of using geographically redundant radios in location determination. Further, rules can be selected to adjust threshold values and equations employed in determining the levels of geographic redundancy. Moreover, rules can be selected to apply boundary conditions to reduce the number of determinations formed for a set of radios of the wireless radio network.
Abstract:
A method includes detecting, at a device coupled to a network, a communication transmitted over the network. The method includes determining whether the communication is associated with an unauthorized data request, and, in response to determining that the communication is associated with the unauthorized data request, determining an access point associated with a source of the communication. The method further includes transmitting a message to a service provider. The message may request identification of mobile communication devices that are located within a threshold distance of the access point.
Abstract:
The systems and methods disclosed herein can implement a handset agent calibration solution that uses the GPS receivers on mobile devices to determine a location of the mobile device to calibrate timing based locating systems. The handset agent can be installed on the mobile device and can upload to an internet server the coordinates captured by the GPS receiver along with the observed time differences. The observed time differences and the location of the mobile device can be used to solve for reference time differences to calibrate unsynchronized macrocells. The reference time difference can be used to solve for the location of other mobile devices if the observed time differences between that mobile device and the macrocells are known. The solution can include receiving measurement reports from many mobile devices to obtain averaged observed time differences at a reference location to achieve more accurate reference time differences.
Abstract:
A method includes detecting, at a device coupled to a network, a communication transmitted over the network. The method includes determining whether the communication is associated with an unauthorized data request, and, in response to determining that the communication is associated with the unauthorized data request, determining an access point associated with a source of the communication. The method further includes transmitting a message to a service provider. The message may request identification of mobile communication devices that are located within a threshold distance of the access point.
Abstract:
The present disclosure provides devices, systems, and methods to utilize relative timing offset information reported by one or more mobile devices. When coupled with AGPS information reported by one or more mobile devices, the offset information is be used to calibrate calculations and subsequently to locate all 3G mobiles with GPS-like accuracy, whether or not a GPS receiver is available on said mobile device being located. A determination of a propagation delay between one or more cell sites and a mobile device is reported to a network and used to calibrate unknown information such as a timing offset, to improve the accuracy of a detected location. The relative timing offset can be applied to determine a location for all other mobile devices within the area served by the known base station. The present disclosure utilizes this method in conjunction with information crowd-sourced from a plurality of mobile devices.
Abstract:
The disclosed subject matter provides for selecting a radio access technology resource based on historical data related to the radio access technology resource. Location information can be employed to determine a radio access technology resource. Historical information related to the radio access technology resource can then be employed to determine the suitability of the radio access technology resource. A set of radio access technology resources can be ordered or ranked to allow selection of a suitable radio access technology resource from the set. Incorporation of historical information can provide for additional metrics in the selection of a radio access technology resource over simple contemporaneous radio access technology resource information. In some embodiments timed fingerprint location (TFL) information can be employed to determine a location.
Abstract:
A user equipment (UE) location in a wireless network can be determined by leveraging geometric calculations for an overlaid bin grid framework mapping the wireless network area to store differential values for each frame of the bin grid framework for each pair of relevant NodeBs. A timing offset can be determined, such that when a time value from a target UE is accessed, the location can be quickly determined with minimal real time computation. In an aspect, the time value from an idle-state target UE can be accessed. The target UE time value can be searched among pre-computed differential value data sets indexed by relevant NodeB site pairs to return sets of frames that can facilitate converging on a location for the target UE. Intersecting frames can represent the geographic location of the UE in the wireless network. Further, the data can be leveraged to correct timing in the network.
Abstract:
Systems and techniques for determining the location of user equipment (UE) in a wireless network are disclosed. These techniques leverage geometric calculations for an overlaid bin grid framework mapping the wireless network area to store differential values for each frame of the bin grid framework for each pair of relevant NodeBs. A timing offset can be determined, such that when a time value from a target UE is accessed, the location can be quickly determined with minimal real time computation. In an aspect, the time value from an idle-state target UE can be accessed. The target UE time value can be searched among pre-computed differential value data sets indexed by relevant NodeB site pairs to return sets of frames that can facilitate converging on a location for the target UE. Intersecting frames can represent the geographic location of the UE in the wireless network. Further, the data can be leveraged to correct timing in the network.