Abstract:
Formation of carbon-substituted single crystal silicon layer is prone to generation of large number of defects especially at high carbon concentration. The present invention provides structures and methods for providing low defect carbon-substituted single crystal silicon layer even for high concentration of carbon in the silicon. According to the present invention, the active retrograde profile in the carbon implantation reduces the defect density in the carbon-substituted single crystal silicon layer obtained after a solid phase epitaxy. This enables the formation of semiconductor structures with compressive stress and low defect density. When applied to semiconductor transistors, the present invention enables N-type field effect transistors with enhanced electron mobility through the tensile stress that is present into the channel.
Abstract:
Formation of carbon-substituted single crystal silicon layer is prone to generation of large number of defects especially at high carbon concentration. The present invention provides structures and methods for providing low defect carbon-substituted single crystal silicon layer even for high concentration of carbon in the silicon. According to the present invention, the active retrograde profile in the carbon implantation reduces the defect density in the carbon-substituted single crystal silicon layer obtained after a solid phase epitaxy. This enables the formation of semiconductor structures with compressive stress and low defect density. When applied to semiconductor transistors, the present invention enables N-type field effect transistors with enhanced electron mobility through the tensile stress that is present into the channel.
Abstract:
A method of formation of integrated circuit devices includes forming a gate electrode stack over a portion of a semiconductor. The stack includes a gate dielectric layer with a gate electrode thereabove. Implant diatomic nitrogen and/or nitrogen atoms into the substrate aside from the stack at a maximum energy less than or equal to 10 keV for diatomic nitrogen and at a maximum energy less than or equal to 5 keV for atomic nitrogen at a temperature less than or equal to 1000° C. for a time of less than or equal to 30 minutes. Then form silicon oxide offset spacers on sidewalls of the stack. Form source/drain extension regions in the substrate aside from the offset spacers. Form nitride sidewall spacers on outer surfaces of the offset spacers over another portion of the nitrogen implanted layer. Then form source/drain regions in the substrate aside from the sidewall spacers.
Abstract:
A method of forming a semiconductor structure may include forming at least one fin and forming, over a first portion of the at least one fin structure, a gate. Gate spacers may be formed on the sidewalls of the gate, whereby the forming of the spacers creates recessed regions adjacent the sidewalls of the at least one fin. A first epitaxial region is formed that covers both one of the recessed regions and a second portion of the at least one fin, such that the second portion extends outwardly from one of the gate spacers. A first epitaxial layer is formed within the one of the recessed regions by etching the first epitaxial region and the second portion of the at least one fin. A second epitaxial region is formed at a location adjacent one of the spacers and over the first epitaxial layer within one of the recessed regions.
Abstract:
A method of forming a semiconductor structure may include forming at least one fin and forming, over a first portion of the at least one fin structure, a gate. Gate spacers may be formed on the sidewalls of the gate, whereby the forming of the spacers creates recessed regions adjacent the sidewalls of the at least one fin. A first epitaxial region is formed that covers both one of the recessed regions and a second portion of the at least one fin, such that the second portion extends outwardly from one of the gate spacers. A first epitaxial layer is formed within the one of the recessed regions by etching the first epitaxial region and the second portion of the at least one fin. A second epitaxial region is formed at a location adjacent one of the spacers and over the first epitaxial layer within one of the recessed regions.
Abstract:
Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include at least one FET gate stack located on an upper surface of a semiconductor substrate. The at least one FET gate stack includes source and drain extension regions located within the semiconductor substrate at a footprint of the at least one FET gate stack. A device channel is also present between the source and drain extension regions and beneath the at least one gate stack. The structure further includes embedded stressor elements located on opposite sides of the at least one FET gate stack and within the semiconductor substrate. Each of the embedded stressor elements includes, from bottom to top, a first layer of a first epitaxy doped semiconductor material having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, a second layer of a second epitaxy doped semiconductor material located atop the first layer, and a delta monolayer of dopant located on an upper surface of the second layer. The structure further includes a metal semiconductor alloy contact located directly on an upper surface of the delta monolayer.
Abstract:
Semiconductor structures are disclosed that include at least one FET gate stack located on a semiconductor substrate. The at least one FET gate stack includes source and drain extension regions located within the semiconductor substrate. A device channel is also present between the source and drain extension regions and beneath the at least one gate stack. Embedded stressor elements are located on opposite sides of the at least one FET gate stack and within the semiconductor substrate. Each stressor element includes a lower layer of a first epitaxy doped semiconductor material having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, and an upper layer of a second epitaxy doped semiconductor material. At least one monolayer of dopant is located within the upper layer of each of the embedded stressor elements.
Abstract:
A method, a system, and a computer program product for managing one or more electronic devices. Performance of an electronic device is monitored and presented to a user through a digital agent interface. The performance of the electronic device is controlled automatically by digital agent through the digital agent interface. The invention also enables automatic testing of the electronic device through the digital agent interface by setting up test configurations, activating test signals, and interpreting any error codes that may be generated.
Abstract:
Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include at least one FET gate stack located on an upper surface of a semiconductor substrate. The at least one FET gate stack includes source and drain extension regions located within the semiconductor substrate at a footprint of the at least one FET gate stack. A device channel is also present between the source and drain extension regions and beneath the at least one gate stack. The structure further includes embedded stressor elements located on opposite sides of the at least one FET gate stack and within the semiconductor substrate. Each of the embedded stressor elements includes, from bottom to top, a first layer of a first epitaxy doped semiconductor material having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, a second layer of a second epitaxy doped semiconductor material located atop the first layer, and a delta monolayer of dopant located on an upper surface of the second layer. The structure further includes a metal semiconductor alloy contact located directly on an upper surface of the delta monolayer.
Abstract:
A method of fabricating and a structure of a merged multi-fin finFET. The method includes forming single-crystal silicon fins from the silicon layer of an SOI substrate having a very thin buried oxide layer and merging the end regions of the fins by growing vertical epitaxial silicon from the substrate and horizontal epitaxial silicon from ends of the fins such that vertical epitaxial silicon growth predominates.