Abstract:
Disclosed is a method of preventing coupling noises for a non-volatile semiconductor memory device. According to the method, if an edge of a write operation signal overlaps an activated period of a read operation signal a check result is generated. The write operation signal is modified based on the check result.
Abstract:
A nonvolatile memory device includes global selection lines, local selection lines, a first selection circuit, and a second selection circuit. The local lines correspond respectively to the global selection lines. The first selection circuit is configured to connect to the global selection lines to select the global selection lines. The second selection circuit is connected between the global selection lines and the local selection lines and is configured to select the local selection lines. The first selection circuit is configured to select at least one global selection line, and the second selection circuit is configured to select the local selection lines corresponding to the selected global selection line while the at least one global selection line is continuously activated.
Abstract:
The present invention relates to a resistance variable memory device, and more particularly, to a resistance variable memory device capable of preventing an effect of coupling noise. The resistance variable memory device includes: a memory cell connected to a bit line; a precharge circuit precharging the bit line in response to a precharge signal; a bias circuit providing a bias voltage to the bit line in response to,a bias signal; and a control logic controlling the precharge signal and the bias signal. The control logic provides the bias signal to the bias circuit at a precharge interval. Accordingly, the resistance variable memory device according to the present invention can prevent an effect coupling noise.
Abstract:
A non-volatile semiconductor memory device may include a memory cell array that may include a plurality of memory transistors; a input circuit that may control a voltage level of an internal reference voltage and a delay time of an internal clock signal in response to an MRS trim code or an electric fuse trim code, and that may generate a first buffered input signal; a column gate that may gate the first buffered input signal in response to a decoded column address signal; and a sense amplifier that may amplify an output signal of the memory cell array to output to the column gate, and that may receive an output signal of the column gate to output to the memory cell array. The non-volatile semiconductor memory device may properly buffer an input signal of a small swing range.