Abstract:
Example embodiments relate to an organic semiconductor polymer, in which fused thiophenes having liquid crystal properties and aromatic compounds having N-type semiconductor properties are alternately included in the main chain of the polymer, an organic active layer, an organic thin film transistor (OTFT), and an electronic device including the same, and methods of preparing the organic semiconductor polymer, and fabricating the organic active layer, the OTFT and the electronic device using the same. This organic semiconductor polymer has improved organic solvent solubility, processability, and thin film properties, and may impart increased charge mobility and decreased off-state leakage current when applied to the channel layer of the organic thin film transistor.
Abstract:
An exemplary organic semiconductor copolymer includes a polymeric repeat structure having a polythiophene structure and an electron accepting unit. The electron accepting unit has at least one electron-accepting heteroaromatic structure with at least one electron-withdrawing imine nitrogen in the heteroaromatic structure or a thiophene-arylene comprising a C2-30 heteroaromatic structure. Methods of synthesis and electronic devices incorporating the disclosed organic semiconductors, e.g., as a channel layer, are also disclosed.
Abstract:
Disclosed herein is an organic thin film transistor comprising a substrate, a gate electrode, an organic insulating layer, an organic active layer and source/drain electrodes, wherein the interface between the organic insulating layer and the organic active layer is of relief structure. According to the present invention, an organic thin film transistor of enhanced electric properties can be obtained regardless of the organic insulating materials used.
Abstract:
Disclosed herein is a composition containing hetero arylene or arylene showing a p-type semiconductor property in addition to thiophene showing a p-type semiconductor property and thiazole rings showing a n-type semiconductor property at a polymer main chain, an organic semiconductor polymer containing the composition, an organic active layer containing the organic semiconductor polymer, an organic thin film transistor (OTFT) containing the organic active layer, an electronic device containing the OTFT, and a method of preparing the same. The composition of example embodiments, which is used in an organic semiconductor polymer and contains thiazole rings, may exhibit increased solubility to an organic solvent, coplanarity, processibility and an improved thin film property.
Abstract:
A heteroacene compound includes a di-thieno-benzo-thieno-thiophene derivative, in which all six rings may be fused together, an organic thin film including the same, and an electronic device that includes the thin film as a carrier transport layer. The compound of example embodiments may have a compact planar structure to thus realize improved solvent solubility and processability. When the compound is applied to electronic devices, a deposition process or a room-temperature solution process may be applied, and as well, intermolecular packing and stacking may be efficiently realized, resulting in improved electrical properties, including increased charge mobility.
Abstract:
Disclosed herein is a composition containing hetero arylene or arylene showing a p-type semiconductor property in addition to thiophene showing a p-type semiconductor property and thiazole rings showing a n-type semiconductor property at a polymer main chain, an organic semiconductor polymer containing the composition, an organic active layer containing the organic semiconductor polymer, an organic thin film transistor (OTFT) containing the organic active layer, an electronic device containing the OTFT, and a method of preparing the same. The composition of example embodiments, which is used in an organic semiconductor polymer and contains thiazole rings, may exhibit increased solubility to an organic solvent, coplanarity, processability and an improved thin film property.
Abstract:
An exemplary organic semiconductor copolymer includes a polymeric repeat structure having a polythiophene structure and an electron accepting unit. The electron accepting unit has at least one electron-accepting heteroaromatic structure with at least one electron-withdrawing imine nitrogen in the heteroaromatic structure or a thiophene-arylene comprising a C2-30 heteroaromatic structure. Methods of synthesis and electronic devices incorporating the disclosed organic semiconductors, e.g., as a channel layer, are also disclosed.
Abstract:
Disclosed are organic semiconductor thin films using aromatic enediyne derivatives, manufacturing methods thereof, and methods of fabricating electronic devices incorporating such organic semiconductor thin films. Aromatic enediyne derivatives according to example embodiments provide improved chemical and/or electrical stability which may improve the reliability of the resulting semiconductor devices. Aromatic enediyne derivatives according to example embodiments may also be suitable for deposition on various substrates via solution-based processes, for example, spin coating, at temperatures at or near room temperature to form a coating film that is then heated to form an organic semiconductor thin film. The availability of this reduced temperature processing allows the use of the aromatic enediynes derivatives on large substrate surfaces and/or on substrates not suitable for higher temperature processing. Accordingly, the organic semiconductor thin films according to example embodiments may be incorporated in thin film transistors, electroluminescent devices, solar cells, and memory devices.
Abstract:
A star-shaped oligothiophene-arylene derivative in which an oligothiophene having p-type semiconductor characteristics is bonded to an arylene having n-type semiconductor characteristics positioned in the central moiety of the molecule and forms a star shape with the arylene, thereby simultaneously exhibiting both p-type and n-type semiconductor characteristics. Further, an organic thin film transistor using the oligothiophene-arylene derivative. The star-shaped oligothiophene-arylene derivative can be spin-coated at room temperature, leading to the fabrication of organic thin film transistors simultaneously satisfying the requirements of high charge carrier mobility and low off-state leakage current.
Abstract:
Example embodiments relate to an organic semiconductor polymer, in which fused thiophenes having liquid crystal properties and aromatic compounds having N-type semiconductor properties are alternately included in the main chain of the polymer, an organic active layer, an organic thin film transistor (OTFT), and an electronic device including the same, and methods of preparing the organic semiconductor polymer, and fabricating the organic active layer, the OTFT and the electronic device using the same. This organic semiconductor polymer has improved organic solvent solubility, processability, and thin film properties, and may impart increased charge mobility and decreased off-state leakage current when applied to the channel layer of the organic thin film transistor.