Abstract:
A method and system (500) for generating an approximately planar sensory field (199) and confirming a presence of an object (310) in the field is provided. The system can include at least one paired receiver (121/122) and at least one transmitter (130) in a front and back orientation of a touchless sensing unit (110). The method can include detecting a movement of the object within a sensory space (176/177), estimating a phase angle of the movement; and evaluating whether the phase angle is within a predetermined range (197), and if so, confirming a presence of the object within the approximately planar sensory field.
Abstract:
A system (100) and method (400) for touchless object control is provided. The system can include a sensing unit (110) for capturing a first signal (677) reflected off a first object (151) at a first time and a second signal (679) reflected off the first object at a second time, a phase detector (116) for identifying a first phase difference (601) between the first signal and the second signal, and a processor (117) for updating an expected location of the first object using the first phase difference. A first object (143) can control a movement of a second object (124) using touchless control.
Abstract:
A device (100) and a method (200) for operating a camera (130) based on touchless movements is provided. The device (100) includes a sensing unit (110) for detecting a touchless movement, and a controller (130) for handling one or more controls of the camera in accordance with the touchless movement. A virtual user interface is provided to allow a user to control a camera on a computer or a mobile device using touchless finger movements. Touchless controls are provided for zoom, pan, focus, aperture, balance, color, calibration, or tilt. A first touchless finger movement can select a control, and a second touchless finger movement can adjust the control.
Abstract:
A method for acute sound detection and reproduction is provided that can include measuring an ambient sound level external to an ear canal at least partially occluded by the earpiece, monitoring a change in the ambient sound level for detecting an acute sound, estimating a proximity of the acute sound, and reproducing the acute sound within the ear canal responsive to detecting the acute sound and the proximity. Other embodiments are disclosed.
Abstract:
A sensory device (200) for providing a touchless user interface to a mobile device (100) is provided. The sensory device can include at least one appendage (210) having at least one sensor (220) that senses a finger (232) within a touchless sensing space (101), and a connector (230) for communicating sensory signals received by the at least one sensor to the mobile device. The sensory device can attach external to the mobile device. A controller (240) can trace a movement of the finger, recognize a pattern from the movement, and send the pattern to the mobile device. The controller can recognize finger gestures and send control commands associated with the finger gestures to the mobile device. A user can perform touchless acquire and select actions on or above a display or removable face plate to interact with the mobile device.
Abstract:
An earpiece (100) and a method (640) for acoustic management of multiple microphones is provided. The method can include capturing an ambient acoustic signal from an Ambient Sound Microphone (ASM) to produce an electronic ambient signal, capturing in an ear canal an internal sound from an Ear Canal Microphone (ECM) to produce an electronic internal signal, measuring a background noise signal, and mixing the electronic ambient signal with the electronic internal signal in a ratio dependent on the background noise signal to produce a mixed signal. The mixing can adjust an internal gain of the electronic internal signal and an external gain of the electronic ambient signal based on the background noise characteristics. The mixing can account for an acoustic attenuation level and an audio content level of the earpiece.
Abstract:
An earpiece (100) is provided. The earpiece can include an Ambient Sound Microphone (111) configured to capture ambient sound, an Ear Canal Microphone (123) configured to capture internal sound in the ear canal, a memory (208) configured to record at least a portion of the history of the ambient sound and the internal sound, and a processor (121) configured to save a recent portion of the history responsive to an event.
Abstract:
An Applications Programming Interface (API) provides coordinate and movement information of an object within a sensory field. The API can provide touchless APT methods for identifying a position, a displacement, a velocity, an acceleration, and a length of time an object is within a sensory field. The API can include an event listener for receiving at least one sensory event, and an event handler for processing sensory events. A GUI can implement the API to provide touchless navigation and control.
Abstract:
An earpiece (100) is provided. The earpiece can include an Ambient Sound Microphone (111) configured to capture ambient sound, an Ear Canal Microphone (123) configured to capture internal sound in the ear canal, a memory (208) configured to record at least a portion of the history of the ambient sound and the internal sound, and a processor (121) configured to save a recent portion of the history responsive to an event.
Abstract:
An earpiece (100) and a method (640) for acoustic management of multiple microphones is provided. The method can include capturing an ambient acoustic signal from an Ambient Sound Microphone (ASM) to produce an electronic ambient signal, capturing in an ear canal an internal sound from an Ear Canal Microphone (ECM) to produce an electronic internal signal, measuring a background noise signal, and mixing the electronic ambient signal with the electronic internal signal in a ratio dependent on the background noise signal to produce a mixed signal. The mixing can adjust an internal gain of the electronic internal signal and an external gain of the electronic ambient signal based on the background noise characteristics. The mixing can account for an acoustic attenuation level and an audio content level of the earpiece. Other embodiments are provided.