Abstract:
A method for preparing a semiconductor substrate with an buried insulating layer by a guttering process, includes the following steps: providing a device substrate and a supporting substrate; forming an insulating layer on a surface of the device substrate; performing a heating treatment on the device substrate, so as to form a denuded zone on the surface of the device substrate; bonding the device substrate having the insulating layer with the supporting substrate, such that the insulating layer is sandwiched between the device substrate and the supporting substrate; annealing and reinforcing a bonding interface, such that an adherence level of the bonding interface meets requirements in the following chamfering grinding, thinning and polishing processes; performing the chamfering grinding, thinning and polishing processes on the device substrate which is bonded.
Abstract:
A detecting device for detecting icing by an image includes an image acquiring system (1-A) and an image processing system (2-A). The image acquiring system (1-A) can acquire an image of an object's surface. The image processing system (2-A) can analyze the image and obtain an icing condition of the object's surface. The detecting device is simple and reliable. It can identify the category of the icing effectively. So, it can improve the accurateness of the icing detection significantly and can accomplish the detection of the object's whole surface. Furthermore, it can detect an icing condition of a super-cooled large droplet. A method for detecting an icing condition of an object's surface using the detecting device is also provided.
Abstract:
A Ge and Si hybrid material inversion mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a circular-shaped cross section and are formed of n-type Ge and p-type Si, respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. In an inversion mode, current flows through the overall cylindrical channel, so as to achieve high carrier mobility, reduce low-frequency noises, prevent polysilicon gate depletion and short channel effects and increase the threshold voltage of the device.
Abstract:
The present invention discloses a method of NiSiGe epitaxial growth by introducing Al interlayer, comprising the deposition of an Al thin film on the surface of SiGe layer, subsequent deposition of a Ni layer on Al thin film and then the annealing process for the reaction between Ni layer and SiGe material of SiGe layer to form NiSiGe material. Due to the barrier effect of Al interlayer, NiSiGe layer features a single crystal structure, a flat interface with SiGe substrate and a thickness of up to 0.3 nm, significantly enhancing interface performance.
Abstract:
A Ge and Si hybrid material inversion mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a circular-shaped cross section and are formed of n-type Ge and p-type Si, respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. In an inversion mode, current flows through the overall cylindrical channel, so as to achieve high carrier mobility, reduce low-frequency noises, prevent polysilicon gate depletion and short channel effects and increase the threshold voltage of the device.
Abstract:
A method of forming interlayer dielectric comprising the steps of forming a first undoped layer, forming in-situ and sequentially a doped layer and a second undoped layer on the first undoped layer, and planarizing the second undoped layer.
Abstract:
A hybrid orientation inversion mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of n-type Si (110) and p-type Si(100), respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. The device structure according to the prevent invention is quite simple, compact and highly integrated. In an inversion mode, the devices have different orientation channels, the GAA structure with the racetrack-shaped, high-k gate dielectric layer and metal gate, so as to achieve high carrier mobility, and prevent polysilicon gate depletion and short channel effects.
Abstract:
The present invention discloses an ESD protection structure in a SOI CMOS circuitry. The ESD protection structure includes a variety of longitudinal (vertical) PN junction structures having significantly enlarged junction areas for current flow. The resulting devices achieve increased heavy current release capability. Processes of fabricating varieties of the ESD protection longitudinal PN junction are also disclosed. Compatibility of the disclosed fabrication processes with current SOI technology reduces implementation cost and improves the integration robustness.
Abstract:
A hybrid orientation accumulation mode GAA (Gate-All-Around) CMOSFET includes a PMOS region having a first channel, an NMOS region having a second channel and a gate region. The first channel and the second channel have a racetrack-shaped cross section and are formed of p-type Si(110) and n-type Si(100), respectively; the surfaces of the first channel and the second channel are substantially surrounded by the gate region; a buried oxide layer is disposed between the PMOS region and the NMOS region and between the PMOS or NMOS region and the Si substrate to isolate them from one another. The device structure according to the prevent invention is quite simple, compact and highly integrated. In an accumulation mode, current flows through the overall racetrack-shaped channel. The disclosed device results in high carrier mobility. Meanwhile polysilicon gate depletion and short channel effects are prevented, and threshold voltage is increased.
Abstract:
The present invention provides a method for preparing an ultra-thin material on insulator through adsorption by a doped ultra-thin layer. In the method, first, an ultra-thin doped single crystal film and an ultra-thin top film (or contains a buffer layer) are successively and epitaxially grown on a first substrate, and then a high-quality ultra-thin material on insulator is prepared through ion implantation and a bonding process. A thickness of the prepared ultra-thin material on insulator ranges from 5 nm to 50 nm. In the present invention, the ultra-thin doped single crystal film adsorbs the implanted ion, and a micro crack is then formed, so as to implement ion-cut; therefore, the roughness of a surface of a ion-cut material on insulator is small. In addition, an impurity atom strengthens an ion adsorption capability of the ultra-thin single crystal film, so that an ion implantation dose and the annealing temperature can be lowered in the preparation procedure, thereby effectively reducing the damage caused by the implantation to the top film, and achieving objectives of improving production efficiency and reducing the production cost.