Abstract:
Methods and apparatus for improved thermal isolation for thermoelectric devices are disclosed. In one embodiment, a thermoelectric device includes a first substrate having a first conductive pad, a second substrate having a second conductive pad, and a gap formed between the first and second conductive pads. At least one of the first and second substrates includes at least one opening positioned adjacent to an outer peripheral edge of the conductive pad. The opening may comprise a trench disposed partially or entirely around the outer peripheral edge of the conductive pad. In operation, the opening inhibits heat transfer between the first and second substrates.
Abstract:
A vehicle including a body and three legs. Each leg includes a proximal end coupled to the body, a distal end opposite the proximal end, and an actuator. Each actuator imparts enough acceleration to the vehicle along an axis of the leg to cause the distal end of the leg to leave a surface upon which it rests. Thus, the robot can pivot around one leg when the actuator of another leg imparts an acceleration. One actuator may also cause two legs to leave the surface. Moreover, the actuators may be spring biased into a retracted position. Further, the body may be a Platonic solid and the axes of the lags may pass through the vehicle's center of gravity. Of course, the body could be a sphere while the vehicle could be a planetary robot or a toy. Methods of traversing a surface are also provided.
Abstract:
The present invention is directed to systems and methods for radiating radar signals, communication signals, or other similar signals. In one embodiment, a system includes a controller that generates a control signal and an antenna coupled to the controller. The antenna includes a first component that generates at least one wave based on the generated control signal and a metamaterial lens positioned at some predefined focal length from the first component. The metamaterial lens directs the generated at least one wave.
Abstract:
A method for producing stable atmospheric pressure glow discharge plasmas using RF excitation and the use of said plasmas for modifying the surface layer of materials. The plasma generated by this process and its surface modification capability depend on the type of gases used and their chemical reactivity. These plasmas can be used for a variety of applications, including etching of organic material from the surface layer of inorganic substrates, as an environmentally benign alternative to industrial cleaning operations which currently employ solvents and degreasers, as a method of stripping paint from surfaces, for the surface modification of composites prior to adhesive bonding operations, for use as a localized etcher of electronic boards and assemblies and in microelectronic fabrication, and for the sterilization of tools used in medical applications.
Abstract:
A method for producing stable atmospheric pressure glow discharge plasmas using RF excitation and the use of said plasmas for modifying the surface layer of materials. The plasma generated by this process and its surface modification capability depend on the type of gases used and their chemical reactivity. These plasmas can be used for a variety of applications, including etching of organic material from the surface layer of inorganic substrates, as an environmentally benign alternative to industrial cleaning operations which currently employ solvents and degreasers, as a method of stripping paint from surfaces, for the surface modification of composites prior to adhesive bonding operations, for use as a localized etcher of electronic boards and assemblies and in microelectronic fabrication, and for the sterilization of tools used in medical applications.
Abstract:
The subject invention is a method of sputtering a material on a substrate in which the substrate is first locally heated so that the mobility on the surface of the substrate is increased to a value E.sub.s. A material is then sputtered on the substrate with a sputtering energy E.sub.k whereby the sum of E.sub.k and E.sub.s is greater than the activation energy required for a chemical reaction to occur between the sputtered surface of the substrate and the sputtered material. In the preferred embodiment, the substrate is silicon and the material to be sputtered is a refractory metal such as titanium.
Abstract:
A photon sensing and amplification device including a photocathode, a transparent electrode opposed from the photocathode, and a plasma chamber positioned between the photocathode and the transparent electrode, wherein the plasma chamber houses an ionizable gas.
Abstract:
Barriers and methods of obstructing apertures. One embodiment provides a temporary barrier that includes a bag, a fluid source, and a shear thickening fluid. The bag is made of fabric and can expand (e.g. inflate) via the fluid source which is in communication with the bag. The shear thickening fluid permeates the fabric of the bag and has two states. In the first state the shear thickening fluid allows the fabric to be flexible. In the second state the shear thickening fluid causes the fabric to be inflexible. To cause the shear thickening fluid to transition to the second state a shear must be present in the shear thickening fluid. A material that is capable of reacting to form a gas may be in communication with the fluid source to provide a gas to expand the bag. A deflation valve may also be included in the barrier.
Abstract:
A piezoelectric device connected to a vibration source converts vibration energy to electrical current. A plurality of pairs of oppositely polarized piezoelectric wafers deflect to produce an electrical current. Each pair of wafers are arranged back-to-back and electrically joined together. The plurality of pairs of wafers are each connected to a set of micro-machined parts. Each pair of wafers form a bimorph, configured as a cantilevered beam attached to a set of parts to form an element. Each cantilevered beam has a mass weighted first end and is fixedly attached to one or more flexible sheaths on a second end. A plurality of elements form a cell unit. A plurality of cell units form an array. The electrical current produced varies by the number of elements per cell unit, and/or with the number of cell units per array.
Abstract:
A method for producing stable atmospheric pressure glow discharge plasmas using RF excitation and the use of said plasmas for modifying the surface layer of materials. The plasma generated by this process and its surface modification capability depend on the type of gases used and their chemical reactivity. These plasmas can be used for a variety of applications, including etching of organic material from the surface layer of inorganic substrates, as an environmentally benign alternative to industrial cleaning operations which currently employ solvents and degreasers, as a method of stripping paint from surfaces, for the surface modification of composites prior to adhesive bonding operations, for use as a localized etcher of electronic boards and assemblies and in microelectronic fabrication, and for the sterilization of tools used in medical applications.