Abstract:
A method, according to one embodiment, includes forming a lubricant film on a magnetic disk having at least a magnetic recording film above a substrate, and a protective film above the magnetic recording film, and wiping the lubricant film while rotating the substrate, e.g., at about 3.0 m/s to about 3.5 m/s by pressing a pad against a wiping cloth e.g., at a loading speed of about 12 mm/min to about 36 mm/min e.g., under a pressure of about 3 gf/mm2 to about 9 gf/mm2. The pad has a convexly curved surface in contact with the wiping cloth, and the wiping cloth is disposed so as to oppose the lubricant film. The method also includes pressing a cleaning tape which includes abrasive grains against the substrate on which the protective film and lubricant film are formed while rotating the substrate to remove protrusions. Apparatuses and forming the layers are also described.
Abstract:
A magnetic-recording-disk test-head. The magnetic-recording-disk test-head includes a slider, a test pad and a slider-surface-shape control mechanism. The slider includes a leading edge and a trailing edge. The test pad is disposed at a trailing-edge side of the slider and is configured to remove and to detect asperities on a magnetic-recording disk. The slider-surface-shape control mechanism is configured to change a shape of an air-bearing surface of the slider and is disposed at a leading-edge side of the slider.
Abstract:
Embodiments in accordance with the invention realize a perpendicular magnetic record medium with a high media S/N and excellent corrosion resistance. In a perpendicular magnetic record medium in accordance with an embodiment of the present invention prepared by forming an adhesion layer, an underlayer, a seed layer, an intermediate layer, and a recording layer sequentially on a substrate, the seed layer is specified to have a laminated structure consisting of a first seed layer and a second seed layer. The first seed layer consists of an amorphous alloy containing Cr and the second seed layer consists of an amorphous alloy predominantly composed of Ni with an fcc structure.
Abstract:
Embodiments of the invention provide a magnetic disk manufacturing method for efficiently removing, in a tape cleaning process of a magnetic disk surface in which scratches tend to occur, fine protrusions that serve as a flying hindrance, allowing no glide noise to occur, and suppressing minor damages (scratches) that are given to the magnetic disk surface and cause a read signal error. In one embodiment, the magnetic disk manufacturing method is characterized in that a surface of a pad facing a cleaning tape is formed with protrusions and indentations.
Abstract:
The object of this invention is to provide a magnetic disk which has an excellent durability even with a protective film having a small film thickness of 4 nm or less. The magnetic disk of this invention is a magnetic disk comprising a non-magnetic substrate and, provided thereon, a magnetic metal film, carbon protective film and fluorine-containing lubricant film, wherein the carbon protective film is a DLC film having a film thickness of 4 nm or less and the ratio of infrared absorption intensity resulting from the C—H bond near 2,920 cm−1 determined by FT-IR using ATR to infrared absorption intensity resulting from the C—F bond of the lubricant film is 0.035-0.060.
Abstract:
Surface roughness of the magnetic layer and the protective layer is flatter than the surface roughness of the substrate to decrease medium noise, hereby levitation stability of the magnetic head in the ultra low region and high density recording is obtained, for magnetic recording medium and magnetic disk apparatus of high reliability.