Abstract:
This invention presents an efficient and efficacious method for an equitable distribution of wireless traffic across the 800 and 1900 MHz bands. Even though traffic distribution across bands is desirable, there is a risk of call failure because of location of the mobile in the vicinity of a BTS group with low capacity in the other band. The method proposed here tells how decisions to migrate calls across bands can be made robust against call failures without imposing unreasonable constraints that make such decisions sparing. It presents: (i) a simple and effective quality measure for carrier-to-carrier comparison; (ii) convergence criteria flagging the convergence of the best carrier determination process for each BTS site using the afore mentioned quality measure; (iii) an effective procedure for their implementation; (iv) a decision procedure for selection of the band and carrier for call setup based on the best carriers of individual sites within the possible reach of the mobile in the two bands; and (v) an overall method that makes use of these components. It also presents method of extending this invention to next generation wireless systems that possibly operate in more than two frequency bands.
Abstract:
A communications network has a plurality of nodes interconnected by an optical transmission medium. The transmission medium is capable of a carrying a plurality of wavelengths organized into bands. A filter at each node for drops a band associated therewith and passively forwards other bands through the transmission medium. A device is provided at each node for adding a band to the transmission medium. Communication can be established directly between a pair of nodes in the network sharing a common band without the active intervention of any intervening node. This allows the network to be protocol independent. Also, the low losses incurred by the passive filters permit relatively long path lengths without optical amplification.
Abstract:
A telecommunications system having a first PS network, second PS network and a third circuit-switched core network includes a system for terminating a legacy domain circuit-switched communication upon receipt of a trigger signal requesting termination of communication. The system includes first and second functional entities in each network. The first and second functional entities of the first network can communicate signals over an interface using a PS protocol. The first and second functional entities of the second network include can communicate signals over an interface using a PS protocol. The first functional entity of the first network can communicate packet data to and from the first functional entity of the second network. The second functional entity of the first network communicates a PS protocol signal to the second entity of the second network, which then communicates a circuit-switched protocol signal to and from the third circuit-switched protocol core network to terminate the circuit-switched communication.
Abstract:
A method and system for conveying an arbitrary mixture of high and low latency traffic streams across a common switch fabric implements a multi-dimensional traffic classification scheme, in which multiple orthogonal traffic classification methods are successively implemented for each traffic stream traversing the system. At least two diverse paths are mapped through the switch fabric, each path being optimized to satisfy respective different latency requirements. A latency classifier is adapted to route each traffic stream to a selected path optimized to satisfy latency requirements most closely matching a respective latency requirement of the traffic stream. A prioritization classifier independently prioritizes traffic streams in each path. A fairness classifier at an egress of each path can be used to enforce fairness between responsive and non-responsive traffic streams in each path. This arrangement enables traffic streams having similar latency requirements to traverse the system through a path optimized for those latency requirements.
Abstract:
Through the introduction of an imaging multimode interference device in an integrated optical circuit, such performance degradations as lateral waveguide field oscillations and backreflections may be suppressed. The suppression of lateral waveguide field oscillations (that may occur due to misaligned optical coupling), in particular, can significantly reduce variations in the power splitting ratio of an optical power splitting structure, such as those employed by a Mach-Zehnder modulator.
Abstract:
An overlay network includes a virtual content server for representing a content provider in a virtual content network and at least a client having a membership in the virtual content network and a content path between the virtual content server and the client. Each node in the content path is also a member of the virtual content network and each link between nodes is provided by a tunnel to ensure trust and integrity at the content level.
Abstract:
A communications interface on a data path between a plurality of data channels and a single communications port on a processor. The communications interface controls data as it passes on a receive path from the plurality of data channels to the single communications port and on a transmit path from the single communications port to the plurality of data channels and is adapted to use a memory to buffer the data when necessary. The communications interface (i) adds a channel identifier, which identifies to which data channel the data relates, to the data on the receive path so that the processor will be able to determine to which data channel the data relates and (ii) removes a channel identifier from the data on the transmit path so that the data will leave the communications interface in the same format in which it was received.
Abstract:
IP packets are conveyed through an OSI network by encapsulating the IP packets in OSI packets. When an IP session is started, an OSI destination address is discovered by broadcasting the encapsulated IP packet to every OSI network element that supports a TCP/IP gateway. Tables are maintained to track IP session data for routing subsequent packets associated with an IP session.
Abstract:
A serial data stream is mapped through a cross-connect via two or more parallel independent shelves. The serial data stream is split into at least two sub-streams. If the lead frame of a sub-stream contains a concatenation indicator, it is replacing by a valid payload pointer, and a split indicator is inserted into the frame. Each of the sub-streams is then mapped through the cross-connect via a respective parallel independent shelf. Finally, the sub-streams are recombined to form an output serial data stream equivalent to the original serial data stream. If the lead frame of a sub-stream contains a split indicator, a concatenation indicator is inserted into the corresponding frame of the output serial data stream to restore the concatenation of the original serial data stream. Otherwise, a payload pointer within the lead frame is replaced by a valid payload pointer in the corresponding frame of the output data stream.
Abstract:
All optical clock recovery includes a transmitter for generating an optical timing signal. The transmitter includes a semiconductor laser for the production of a dynamically synchronizable timing signal, the laser having an external resonator for feedback of the timing signal to the laser, the feedback having a delay time greater than a relaxation oscillation time for the laser, and the laser outputting an optical timing signal having a characteristic dynamic. The transmitter supplies the optical timing signal to a receiver configured to receive the timing signal and to synchronize to the laser on receipt of the timing signal, such that the receiver outputs a recovered timing signal having the characteristic dynamic. A number of receivers may be provided in sequence along an optical path, each receiver configured to receive the timing signal originally outputted with the characteristic dynamic from the transmitter, and synchronized to the transmitter on receiving the signal and thereby outputting a recovered timing signal having the characteristic dynamic. All optical clock recovery is provided without increased electronic complexity and avoids thermal drift.