Abstract:
A vehicular heat exchanger processes a exhaust gas recirculation flow. A method to manage combustion by-product contaminant deposits within the heat exchanger includes repeatedly cycling a flow control device controlling the exhaust gas recirculation flow through the heat exchanger from an original position to an intermediate position and back to the original position. The original position is determined based upon a required exhaust gas recirculation flow into an intake manifold.
Abstract:
A cleaning mechanism for and method of autonomously removing deposits from the interior surface of a tube comprises a cleaning member secured relative to the surface and preferably, an active material element drivenly coupled to or engaged with the member so as to selectively cause the member to translate, thereby removing deposits from the surface.
Abstract:
The invention comprises a method to determine a position of a piston in a cylinder of an engine during ongoing operation, comprising adapting pressure sensing devices to monitor in-cylinder pressure, and, operating the engine. In-cylinder pressure is monitored along with a corresponding engine crank position. The engine is operated in a motoring mode and in a cylinder firing mode, and a plurality of instantaneous in-cylinder pressure states are determined during compression and expansion strokes. Pressure ratios are determined based upon the instantaneous in-cylinder pressure states, which are used to determine an engine crank angle and compression ratio error and, adjust the monitored engine crank position based upon the crank angle error and readjust engine operation according to these sensed errors.
Abstract:
In accordance with one embodiment of the present invention, a device for generating hydrogen from a water vapor containing exhaust is provided. The device comprises an exhaust diverter and a hydrogen generation section. The exhaust diverter is configured to divert a portion of the exhaust to the hydrogen generation section. The hydrogen generation section comprises an electrolysis unit defining a hermetically sealed void volume configured to accumulate and store hydrogen. The exhaust diverter may be placed in communication with a heat exchanger configured to increase a fractional relative humidity of the diverted exhaust by cooling the diverted exhaust. In accordance with 37 CFR 1.72(b), the purpose of this abstract is to enable the United States Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure. The abstract will not be used for interpreting the scope of the claims.
Abstract:
An after-treatment system arrangement and method of operating the after-treatment system arrangement is provided for heating the exhaust gas of an internal combustion engine. The after-treatment system arrangement includes an oxidation device for catalytically oxidizing the exhaust gas and a port in the exhaust-gas stream for selectively introducing a controlled amount of oxygen into the exhaust gas in response to a condition of the exhaust gas. The introduction of oxygen can be selectively controlled in response to the temperature of the exhaust gas downstream of the oxidation device. Simultaneously or alternatively, the introduction of oxygen can be selectively controlled in response to the chemical composition of the exhaust gas. The air-to-fuel ratio of the exhaust gas may also be controlled to further facilitate heating of the exhaust gas. The after-treatment system arrangement can also be controlled to remove pollutant emissions from the exhaust gas.