Abstract:
A heat exchanger of motor vehicle processes a gas flow including combustion exhaust gas. Combustion by-product deposit build-up within the heat exchanger is reduced by maintaining a minimum gas flow velocity within the heat exchanger by reducing heat exchanger total gas flow cross section to locally increase a gas flow velocity.
Abstract:
A method for operating an internal combustion engine configured to operate lean of stoichiometry includes reducing temperature of a portion of an exhaust gas feedstream recirculated to an intake system of the engine, and reducing mass flowrate of particulate matter and hydrocarbons borne in the recirculated portion of the exhaust gas feedstream upstream of the heat exchanger effective to reduce deposition of particulate matter and hydrocarbons onto and adhesion to surface areas of the heat exchanger.
Abstract:
A heat exchanger of motor vehicle processes a gas flow including combustion exhaust gas. Combustion by-product deposit build-up within the heat exchanger is reduced by maintaining a minimum gas flow velocity within the heat exchanger by reducing heat exchanger total gas flow cross section to locally increase a gas flow velocity.
Abstract:
A cleaning mechanism for and method of autonomously removing deposits from the interior surface of a tube comprises a cleaning member secured relative to the surface and preferably, an active material element drivenly coupled to or engaged with the member so as to selectively cause the member to translate, thereby removing deposits from the surface.
Abstract:
A heat exchanger device for an exhaust gas recirculation system of an internal combustion engine includes a heat exchange device including a first surface and a second surface. The first surface is in fluid contact with a recirculated portion of exhaust gas flowing in an exhaust system and the second surface is in fluid contact with a second fluid. The first surface is subjected to a surface treatment effective to reduce adhesive properties that relate to surface tension of particulate matter that precipitates from the recirculated portion of the exhaust gas.
Abstract:
A method for operating an internal combustion engine configured to operate lean of stoichiometry includes reducing temperature of a portion of an exhaust gas feedstream recirculated to an intake system of the engine, and reducing mass flowrate of particulate matter and hydrocarbons borne in the recirculated portion of the exhaust gas feedstream upstream of the heat exchanger effective to reduce deposition of particulate matter and hydrocarbons onto and adhesion to surface areas of the heat exchanger.
Abstract:
A vehicular heat exchanger processes a exhaust gas recirculation flow. A method to manage combustion by-product contaminant deposits within the heat exchanger includes repeatedly cycling a flow control device controlling the exhaust gas recirculation flow through the heat exchanger from an original position to an intermediate position and back to the original position. The original position is determined based upon a required exhaust gas recirculation flow into an intake manifold.
Abstract:
A vehicular heat exchanger processes a exhaust gas recirculation flow. A method to manage combustion by-product contaminant deposits within the heat exchanger includes repeatedly cycling a flow control device controlling the exhaust gas recirculation flow through the heat exchanger from an original position to an intermediate position and back to the original position. The original position is determined based upon a required exhaust gas recirculation flow into an intake manifold.
Abstract:
A cleaning mechanism for and method of autonomously removing deposits from the interior surface of a tube comprises a cleaning member secured relative to the surface and preferably, an active material element drivenly coupled to or engaged with the member so as to selectively cause the member to translate, thereby removing deposits from the surface.
Abstract:
A method for managing thermal energy in an internal combustion engine including an exhaust gas recirculation system and an engine cooling system includes recirculating a portion of an exhaust gas through the exhaust gas recirculation system that is in thermal communication with a first side of a thermoelectric device, flowing an engine coolant into thermal communication with a second side of a thermoelectric device, and controlling electric current between an electrical energy storage device and the thermoelectric device to transfer thermal energy between the recirculated exhaust gas and the engine coolant.