Abstract:
A bulk acoustic wave device includes an acoustic decoupler between first and second film bulk acoustic resonators (FBARs). The first FBAR is resonant at a resonant frequency of the device and includes first and second planar electrodes abutting opposite sides of a first resonator volume free of any intervening electrodes and containing piezoelectric material disposed for acoustic vibrations parallel to a propagation axis normal to the first and second electrodes. The first FBAR has a first electrical impedance parallel to the propagation axis. The second FBAR is resonant at the resonant frequency and includes third and fourth planar electrodes abutting opposite sides of a second resonator volume free of any intervening electrodes and containing piezoelectric material disposed for acoustic vibrations parallel to the propagation axis. The second FBAR has a second electrical impedance parallel to the propagation axis and different from the first electrical impedance.
Abstract:
A technique for producing a scent from a hand-held device involves receiving a scent mixture formula at a hand-held device, converting the scent mixture formula into dispense control signals, and generating a scent mixture in response to the dispense control signals, the scent mixture being generated from different base scents that are individually stored within the hand-held device. In an embodiment, the scent mixture formula includes a scent identifier and a scent quantifier related to each base scent that is used to generate the scent mixture. Mixing multiple base scents to generate scent mixtures greatly expands the range of different scents that can be generated at a hand-held device that stores a limited number of base scents. Further, encoding a scent mixture into a scent mixture formula enables scent mixtures to be easily shared between hand-held devices.
Abstract:
An apparatus including vertically separated acoustic resonators are disclosed. The apparatus includes a first acoustic resonator on a substrate and a second acoustic resonator vertically separated above the first acoustic resonator. Because the resonators are vertically separated above another, total area required to implement the resonators is reduced thereby savings in die size and cost are realized. The vertically separated resonators are supported by standoffs that are fabricated on the substrate, or on a resonator.
Abstract:
Acoustically coupled resonators include a first and a second acoustic resonator. Both the first and second acoustic resonators include a first electrode, a layer of piezoelectric material, and a second electrode. The first electrode is adjacent a first surface of the layer of piezoelectric material. The second electrode is adjacent a second surface of the layer of piezoelectric material. At least the second electrode has an edge that is tapered.
Abstract:
A bandpass filter includes input and output terminals, first and second acoustic resonators, and an acoustic coupling layer. The first acoustic resonator includes first and second electrodes, and a piezoelectric layer between the first and second electrodes. The first electrode of the first acoustic resonator is connected to the input terminal. The second acoustic resonator includes first and second electrodes, and a piezoelectric layer between the first and second electrodes. The acoustic coupling is provided between the second electrode of the first acoustic resonator and the first electrode of the second acoustic resonator. The output terminal is connected to the second electrode of the second acoustic resonator. A capacitor extends between the input terminal and the output terminal. The filter's frequency response includes at least two transmission zeros.
Abstract:
Systems and methods of detecting wireless channel status from acoustic discrimination of spectral content are described. In one aspect, a wireless system includes a spectrum analyzer, a detector, and a controller. The spectrum analyzer is operable to acoustically discriminate spectral content of an input electrical signal in multiple discrete frequency channels. The detector is operable to determine respective statuses of the frequency channels from the acoustically discriminated spectral content. The controller is operable to select one of the frequency channels based on the determined statuses of the frequency channels.
Abstract:
An oscillatory circuit. The oscillatory circuit includes a first oscillator, a second oscillator, and a mixer circuit. The first oscillator is configured to generate a first oscillating signal at a first frequency and has a first frequency temperature coefficient. The second oscillator is configured to generate a second oscillating signal at a second frequency and has a second frequency temperature coefficient. The second frequency is greater than the first frequency, and the second frequency temperature coefficient is less than the first frequency temperature coefficient. The mixer circuit is configured to receive the first oscillating signal from the first oscillator, to receive the second oscillating signal from the second oscillator, and to generate a mixer signal from the first and the second oscillating signals. The mixer signal comprises a signal component at a beat frequency. The beat frequency is equal to the difference between the second frequency and the first frequency.
Abstract:
A humidity sensor that includes a resonant structure and a structure for altering a resonant frequency of the resonant structure in response to a change in humidity. The structures of a humidity sensor according to the present teachings may be formed in relatively small form factors and are well suited to remote applications and providing mechanisms for compensating for temperature drift.