Abstract:
Beamforming with nulling techniques for wireless communications networks are disclosed. For example, an apparatus may include a beamforming module and a weight determination module. The beamforming module applies beamforming weights to a downlink user channel with a first mobile station. The weight determination module determines the beamforming weights based on user channel information and interfering channel information. This user channel information is received from the first mobile station and includes characteristics of the downlink user channel. However, the interfering channel information includes characteristics of one or more downlink interfering channels received by one or more further mobile stations. These downlink interfering channels are associated with transmissions across the downlink user channel with the first mobile station.
Abstract:
Techniques are described that can be used to maximize the interference suppression capability of space-time coded systems by managing synchronous transmission signaling. To enhance the probability of the occurrence synchronous interference and accordingly increase interference cancellation capability at a receiver, a network of at least two transmitters in a network may utilize similar structured coding schemes and coordinate transmission so that the receiver receives co-channel signals synchronously.
Abstract:
Embodiments of a base station and method for reducing asynchronous interference in a multi-tier OFDMA overlay network are generally described herein. In some embodiments, a lower-tier base station is configured to adjust OFDMA frame boundaries to cause frames communicated by a higher-tier to arrive within a cyclic prefix at the lower-tier base station. The lower-tier base station may also be configured to adjust OFDMA frame boundaries to cause frames communicated by a lower-tier of the network to arrive within a cyclic prefix at a higher-tier mobile station. Accordingly, frames from one tier may arrive within the cyclic prefix of another thereby reducing asynchronous interference.
Abstract:
The present invention discloses a method including: storing identification information or location information for a handover previously performed by a mobile system; estimating when the mobile system enters within a coverage area of a target femtocell; recognizing the coverage area based on the identification information or the location information; and scanning for the target-femtocell prior to handover.
Abstract:
A method for managing and allocating radio resources (RRMA method) of multiple radio resource types to subscriber stations is disclosed. The RRMA method includes bandwidth partitioning, into parts comprising “slots” with a given reuse pattern, a selection rule, to select a “cell, reuse pattern” pair serving each user, and an allocation rule, for distributing to each user an appropriate number of bandwidth slots from the selected “cell, reuse pattern” pair. After an adaptation period, the method reaches a desired fairness, while simultaneously reaching a maximal mean throughput, possible under this fairness. For big networks, the method provides basically decentralized radio resource management. The RRMA method is useful to cellular networks having a single set of orthogonal sub-channels (frequency/time slots) being reused by all network cells, such as time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), or OFDMA/TDMA cellular systems. Particularly, the method is applicable in fractional frequency reuse cellular networks.
Abstract:
Techniques involving beamforming are disclosed. For example, For instance an apparatus may select a first mobile station served by a first base station and a second mobile station served by a second base station. Based on this selection, a quality metric may be determined that is based on a strength of a user link and a strength of an interfering link. The user link is associated with service of the first mobile station and the interfering link is associated with service of the second mobile station. When the quality metric is greater than a predetermined threshold, the apparatus may designate the first and second mobile stations as suitable for beamforming service in a same resource allocation. Also, techniques are disclosed for determining whether a mobile station is a cell edge mobile station.
Abstract:
Methods and systems for communicating in a wireless network include mitigating co-channel interference (CCI) for precoded multiple-input multiple-output (MIMO) systems and incorporating the effect of CCI mitigation on channel characteristics in the design of channel state information (CSI) feedback mechanisms. Various embodiments and variants are also disclosed.
Abstract:
The present invention provides a diversity transmission system. The diversity transmission system includes a diversity transmitter receiving incoming symbols. The diversity transmitter includes at least one transmitter antenna transmitting a plurality of multi-carrier modulated signals. Each multi-carrier-modulated signal includes a corresponding processed symbol sub-block stream. Each symbol of the processed symbol sub-block stream is based on a linear transform of a plurality of incoming symbols. The diversity transmission system further includes a diversity receiver. The diversity receiver includes at least one receiver antenna receiving the plurality of multi-carrier modulated signals after the multi-carrier modulated signals having been modified by transmission channels between the transmitter antennas and the receiver antenna. The diversity receiver further includes at least one multi-carrier demodulator for demodulating the received multi-carrier modulated signals and generating a demodulated symbol stream. A symbol-processing unit receives the demodulated symbol stream and generates a stream of outgoing symbols. The invention also includes a diversity transmitter. The diversity transmitter includes a symbol-processing unit for receiving a stream of incoming symbols and generating a plurality of processed symbol streams. The processed symbol streams are based on linear transforms of the incoming symbols. A plurality of multi-carrier modulators generate a plurality of multiple-carrier modulated signals. Each multi-carrier modulator receives a corresponding processed symbol stream and generates a multiple-carrier-modulated signal based on the corresponding processed symbol stream.
Abstract:
The present disclosure is related to multi-queue management techniques and packet reordering techniques for inter-radio access technology (RAT) and intra-RAT traffic steering. The multi-queue management and packet reordering techniques may be used in Multi-Access Management Services (MAMS) framework, which is a programmable framework that provides mechanisms for the flexible selection of network paths in a multi-access (MX) communication environment, based on an application's needs. Other embodiments may be described and/or claimed.
Abstract:
Certain embodiments herein relate to scheduling interference between wireless devices in a manner that reduced interference associated with full duplex communication. Signal strength and interference information associated with communication between wireless devices may be collected and forwarded to a processing device, such as a central controller. The central controller may utilize such information to generate a conflict graph that depicts interference relationships between the wireless devices. Using the conflict graph, the central controller may determine whether requested communications may be scheduled along with concurrently scheduled communications without resulting in interference affecting the communications. In one embodiment, a requested communication may be scheduled with other concurrently scheduled communications if the aggregated throughput is increased with the addition of the requested communication.