Abstract:
Composite materials containing mill feeds and a synthetic resin, such as polyethylene and/or polypropylene, may be used to make wood replacement products for use as construction materials.
Abstract:
High protein expanded products are produced by extrusion with unique blends of ingredients, such as wheat protein isolates, modified wheat starch, salts, gums and moisture. The mixture is extruded in a twin-screw extruder with the temperatures in the range of 50 to 140° C., screw speeds of 250 to 450 rpm and with a back pressure of 350 to 1200 psi for different recipes. A range of expanded wheat crisps and other expanded products with wheat protein contents ranging from 30 to 90% are obtained from this process. The expanded products have good cell structure with varying cell sizes when viewed under a microscope. This process can be used to develop a varied range of products such as, wheat crisps, wheat curls, wheat loops etc. The products may be used in nutritional or health bars and other comestible having a high protein and low carbohydrate content.
Abstract:
Unhydrolyzed and hydrolyzed jojoba protein having high simmondsin concentration are provided. These jojoba proteins may be in the form of an aqueous dispersion containing a mixture of amino acids, peptides and/or protein fractions derived from the extraction and hydrolysis of naturally occurring jojoba protein, or dried into a powder.
Abstract:
Bread and similar wheat flour-based products are provided which exhibit reduced toughness when subjected to microwave heating. The products are prepared from wheat flour-based, leavened doughs which have adjusted gliadin:glutenin ratios of from about 1.1-2.3, such ratio adjustment is preferably accomplished by the addition of a gliadin-rich preparation into the starting doughs, typically at levels of from about 1-6% (fwb).
Abstract:
Wheat gluten protein-based biodegradable or edible films are produced using aqueous, essentially alcohol-free casting dispersions containing modified wheat protein and a plasticizer. The modified wheat protein is prepared by treating purified naturally occurring wheat protein with a reducing agent (e.g., sodium metabisulfite) in order to reduce the average molecular weight of the wheat protein and to cleave disulfide bonds therein. Such modified wheat gluten protein lowers the viscosity and allows increased solid contents in the casting dispersions, allowing fabrication of improved films.
Abstract:
Wheat gluten protein-based biodegradable or edible films are produced using aqueous, essentially alcohol-free casting dispersions containing modified wheat protein and a plasticizer. The modified wheat protein is prepared by treating purified naturally occurring wheat protein with a reducing agent (e.g., sodium metabisulfite) in order to reduce the average molecular weight of the wheat protein and to cleave disulfide bonds therein. Such modified wheat gluten protein lowers the viscosity and allows increased solid contents in the casting dispersions, allowing fabrication of improved films.
Abstract:
An improved alcohol-free method for fractionating gluten into gliadin and glutenin fractions is provided where an acidic dispersion of gluten is formed with a reducing agent (e.g., sodium metabisulfite) operable for breaking disulfide bonds in the gluten protein. Thereafter, the pH of the dispersion is raised to cause glutenin to precipitate while leaving gliadin suspended in the dispersion. The respective fractions can then be separated by decanting or centrifugation. In preferred processing, the dispersion is reacidified prior to separation in order to achieve a higher degree of separation of the glutenin and gliadin.
Abstract:
Hydrothermal processes are provided for preparing hybrid proteins containing altered SS/SH bonds, thereby yielding hybrid proteins having enhanced functional and/or nutritional properties. The processes involve initial homogenization of a protein-containing slurry containing at least two proteins, followed by high pressure steam treatment in a jet cooker (16) or similar device in order to heat shock and thereby alter the conformation of some of the proteins, followed by a holding period to allow the proteins to reform, whereupon the proteins are cooled. Plant and animal proteins may be processed, and the starting slurry can be pH-modified and/or supplemented with one or more additional ingredients (e.g., salts, phosphates, fatty acids, polysaccharides, alcohols, aromatic compounds). The hybrid proteins are useful as food ingredients (e.g., solubility, wetability, dispersibility, foiling, emulsification, viscosity, gelatinosa or thickening agents).
Abstract:
Hydrothermal processes are provided for preparing hybrid proteins containing altered SS/SH bonds, thereby yielding hybrid proteins having enhanced functional properties. The processes involve steam treatment of an aqueous protein-containing slurry containing at least two different proteins in a jet cooker (16) or similar device in order to heat shock and thereby alter the conformation of some of the proteins, followed by relatively rapid cooling to cause formation of the desired hybrids. Plant and animal proteins may be processed, and the starting slurry can be pH-modified and/or supplemented with one or more additional ingredients (e.g., salts, phosphates, fatty acids, polysaccharides, alcohols, aromatic compounds). The hybrid proteins are useful as food ingredients (e.g., solubility, wetability, dispersibility, foaming, emulsification, viscosity, gelation or thickening agents).
Abstract:
Mineral-bound starch products are provided for enhanced absorption of nutrient minerals. The mineral-bound starch products are prepared by binding biologically active minerals to phosphorylated cross-linked starch. The mineral-bound starch products are stable against heating in hot water followed by washing processes, but able to release bound minerals after digestion.