Abstract:
Interacted starch products made up of resistant starch and hydrocolloid are provided which exhibit at least about 20% resistance to α-amylase digestion. The products are prepared by mixing together quantities of resistant starch and hydrocolloid in water with mixing and optional heating, followed by drying. Foods containing the interacted starch products are also disclosed.
Abstract:
Mineral-bound starch products are provided for enhanced absorption of nutrient minerals. The mineral-bound starch products are prepared by binding biologically active minerals to phosphorylated cross-linked starch. The mineral-bound starch products are stable against heating in hot water followed by washing processes, but able to release bound minerals after digestion.
Abstract:
Mineral-bound starch products are provided for enhanced absorption of nutrient minerals. The mineral-bound starch products are prepared by binding biologically active minerals to phosphorylated cross-linked starch. The mineral-bound starch products are stable against heating in hot water followed by washing processes, but able to release bound minerals after digestion.
Abstract:
Interacted starch products made up of resistant starch and hydrocolloid are provided which exhibit at least about 20% resistance to α-amylase digestion. The products are prepared by mixing together quantities of resistant starch and hydrocolloid in water with mixing and optional heating, followed by drying. Foods containing the interacted starch products are also disclosed.
Abstract:
Starch-lipid composites are prepared by heat treatment of thermally stable granular starch with lipids under controlled conditions. The granular starch-lipid composites display unique properties including excellent cold and hot water swelling characteristics and the formation of stable emulsions. The products are useful as dispersing agents, thickening agents, fat substitutes and carriers for lipid-soluble active ingredients in foods, personal care and pharmaceutical applications.
Abstract:
Pregelatinized forms of chemically modified resistant starches are provided which have a high degree of resistance to α-amylase digestion, fat-like texture and outstanding freeze-thaw stability. The starch products are formed as distarch phosphodiesters that undergo melting of the crystalline phase by heating above their gelatinization temperature. The products maintain a granular morphology that produces a smooth texture. The pregelatinized resistant starches may be used in various food products, where they lend high dietary fiber, low fat and/or low calorie characteristics to the product.