Abstract:
The present invention provides a method to enhance the RACH message transmission of a wireless communication systems. Therefore the known RACH procedure for uplink transmission is extended by additional steps in order to allow the usage of adaptive transmission parameters for uplink transmissions, preferably the usage of adaptive modulation and coding (AMC). This is advantageous because studies in high-speed downlink packet access show the possibility to increase the data rate of a downlink shared channel. The method according to the invention introduces a new RACH message preamble and enables the base station to estimate suitable adaptive transmission parameters like an AMC setting according to the current transmission conditions which are used during the RACH message transmission.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for avoiding conflicts between evolved Multimedia Broadcast Multicast Services (eMBMS) operations and paging and/or mobile originated (MO) operations in communication systems. A method for wireless communications by a user Equipment (UE) is provided. The method generally includes identifying at least one evolved Multimedia Broadcast Multicast Service (eMBMS) session available for receiving one or more eMBMS services from a base station. The method also includes taking one or more actions to reduce a conflict between receiving the one or more eMBMS services from the base station and receiving a paging message from the base station during the eMBMS session. Numerous other aspects are provided.
Abstract:
Aspects disclosed herein relate to effectively handling failure and retry mechanisms during pre-registration for an eHRPD optimized handover. In one example, a UE may be equipped to detect one or more instances of failure during a pre-registration procedure as part of an optimized handover process. The UE may further be equipped to perform one or more pre-registration retry processes based on the detected one or more instances of failure. In one aspect, the one or more instances of failure may include any combination of a permanent LTE connection failure, a temporary LTE connection failure, a session negotiation failure, a virtual connection failure when bringing up a data call, a link control protocol (LCP) failure, etc.
Abstract:
Aspects disclosed herein relate to enabling fallback to a second data service based on whether one or more fallback conditions are present before or during establishing a data context with a first data service. In one example, a UE may be configured to determine whether one or more fallback conditions are present before or during establishing a data session with a first data service. The UE may be further configured to prohibit further attempts to establish a data context to access the first data service based on the determination of the presence of at least one of the one or more fallback conditions. Some aspects disclosed herein relate to enabling fallback to a HRPD data service based on whether one or more fallback conditions are present before or during establishing a data context with an eHRPD data service.
Abstract:
A method for maintaining IP context during an inter RAT handover of a UE between an eHRPD network and an LTE network may include delaying a transfer of an Internet Protocol context for at least one active packet data network until an IP address for an attach (PDN) Packet Data Network has been assigned and in the case where the Internet Protocol address for the Attach Packet Data Network is not assigned, initiating a detach operation from the LTE network without the user equipment losing the Internet Protocol context of the at least one active Packet Data Network.
Abstract:
A method for optimizing data retry mechanisms is described. The method includes attempting to originate a data call on an evolved high rate packet data system. The method also includes determining that originating the data call has failed. A type of failure that caused the data call to fail is determined. The frequency of data call origination attempts is reduced based on the type of failure.
Abstract:
An apparatus operable in a communication system and having the capability to discard an internet protocol address is described. The apparatus is configured to receive an assignment of a first internet protocol address of a first type for a first application and a second internet protocol address of a second type for a second application for a data connection to a network. The apparatus is also configured to determine that the apparatus is currently not able to handle both the first internet protocol address and the second internet protocol address. The apparatus is further configured to determine an internet protocol address to discard, and discard the determined internet protocol address.
Abstract:
Techniques for managing resources on a wireless device are described. In an aspect, congestion of resources on the wireless device may be detected. If any resources are deemed to be congested, then congestion of the congested resources may be relieved by controlling utilization of the congested resources by at least one client. In one design, flow control may be performed for at least one data flow to relieve congestion of the congested resources. A pattern indicative of when to send messages enabling data transmission and when to send messages disabling data transmission may be selected. Messages may then be sent in accordance with the pattern to control transmission of data for the at least one data flow. Another pattern with a higher ON fraction or a lower ON fraction may be selected based on usage of the congested resources.
Abstract:
Aspects disclosed herein relate to effectively handling failure and retry mechanisms during pre-registration for an eHRPD optimized handover. In one example, a UE may be equipped to detect one or more instances of failure during a pre-registration procedure as part of an optimized handover process. The UE may further be equipped to perform one or more pre-registration retry processes based on the detected one or more instances of failure. In one aspect, the one or more instances of failure may include any combination of a permanent LTE connection failure, a temporary LTE connection failure, a session negotiation failure, a virtual connection failure when bringing up a data call, a link control protocol (LCP) failure, etc.
Abstract:
Certain aspects of the present disclosure provide techniques for wireless communications, wherein distinct port partitions are assigned to processing entities on a user equipment device. Doing so provides the processing entities with concurrent access to the single PDN connection.