Abstract:
In an apparatus to manufacture a dielectric layer that can reduce a spreading process of the dielectric layer, and a method of manufacturing a Plasma Display Panel (PDP) with reduced manufacturing time using the apparatus, the apparatus includes: a surface plate adapted to receive a substrate; a slot die adapted to move in two directions above the surface plate; a nozzle arranged on one end of the slot die and adapted to spread a coating fluid on top of the substrate to form the dielectric layer; a coating fluid tank adapted to store the coating fluid to be supplied to the nozzle of the slot die; and a coating fluid pump adapted to supply the coating fluid from the coating fluid tank to the nozzle of the slot die.
Abstract:
A plasma display panel includes a first substrate and second substrate opposing each other, address electrodes arranged on the first substrate along a first direction, barrier ribs arranged between the first substrate and the second substrate to define a plurality of discharge cells, and display electrodes arranged on the second substrate along the second direction intersecting the first direction. The barrier ribs include dummy barrier ribs arranged in a non-display region provided in the first substrate and the second substrate, the dummy barrier ribs satisfying the following formula: 2.4≦(h/l)×100≦6.0 where l is a length of a dummy barrier rib measured in the first direction, and h is a height of a barrier rib measured in a thickness direction of the panel.
Abstract:
A plasma display panel (PDP) is provided capable of improving luminous efficiency by enlarging a discharge space, and lowering a discharge firing voltage. The plasma display panel includes a first dielectric layer next to a discharge cell in which a plurality of grooves are formed such that each groove is formed between an X electrode and a Y electrode of the discharge cell and covering the sustain electrode pairs and the intermediate electrodes.
Abstract:
A plasma display panel (PDP) designed to reduce the amount of external light that is reflected. This is accomplished by having some phosphor material on portions of the tops of the barrier ribs outside the discharge cells. Since the reflectance of the barrier rib material is higher than that of phosphor material, such a design will reduce the amount of external light reflected off the screen of a plasma display panel. By reducing external light reflection, the contrast of the image is improved. This can be achieved while still preventing crosstalk between neighboring discharge cells.
Abstract:
A plasma display device prevents interconnect wiring from breaking due to thermal deformation, and is thus suitable for high definition. The plasma display device includes a chassis base, a plasma display panel disposed in front of the chassis base to display an image, a circuit board disposed in back of the chassis base for driving the plasma display panel, and interconnect wiring connecting the circuit board to the plasma display panel. The plasma display device has a structure in which a ratio of a distance between an end of the circuit board and a curve apex of the interconnect wiring to a distance between a front end and a back end of the interconnect wiring is at least 0.25. As a result, the interconnect wiring is prevented from breaking due to thermal expansion of the plasma display panel and the chassis base.
Abstract:
A plasma display panel includes a front glass substrate and a rear glass substrate coupled to each other by a sealing material coated at edges of the front and rear glass substrates, first and second electrodes disposed perpendicular to each other on opposing inner surfaces of the front and rear glass substrates facing each other, a dielectric layer formed on each of the opposing inner surfaces,of the front and rear glass substrates to cover the first and second electrodes, partitions formed on an upper surface of the dielectric layer of the rear glass substrate, red, green and blue fluorescent substances coated between the partitions, and a non-light emitting zone filling portion formed by filling a non-light emitting zone existing between the outermost one of the partitions and the sealing material with a material used for one of the partitions.
Abstract:
A plasma display panel having a light absorption reflection film that does not reflect light emitted from a discharge space in a non-discharge region includes: a rear substrate; a plurality of address electrodes arranged on a surface of the rear substrate; a rear dielectric layer arranged on the rear substrate to cover the address electrodes; a plurality of barrier ribs arranged on the rear dielectric layer to define discharge cells; a front substrate facing the rear substrate; a plurality of sustaining electrode pairs composed of X and Y electrodes; a light absorption reflection film including a first light absorption reflection film arranged between the adjacent sustaining electrode pairs and a second light absorption reflection film having a different width than that of the first light absorption reflection film, the second light absorption reflection film arranged on a lower surface of the first light absorption reflection film; and a front dielectric layer arranged on a lower surface of the front substrate to cover the X and Y electrodes and the light absorption reflection film.
Abstract:
A Plasma Display Panel (PDP) includes: a front panel having a front plate and a plurality of electrodes arranged on a surface of the front plate in a predetermined pattern and a back panel having a back plate facing the front plate, a plurality of electrodes arranged on a surface of the back plate in a predetermined pattern to correspond to the plurality of electrodes of the front plate, and at least one ventilation hole. At least two back plates are formed by cutting one base plate on which at least two ventilation holes are formed. Each ventilation hole has a first width in a first edge direction of the back plate and a distance from the first edge to a center of the at least one ventilation hole is at least twice that of the first width.
Abstract:
A plasma display panel includes a front glass substrate and a rear glass substrate coupled to each other by a sealing material coated at edges of the front and rear glass substrates, first and second electrodes disposed perpendicular to each other on opposing inner surfaces of the front and rear glass substrates facing each other, a dielectric layer formed on each of the opposing inner surfaces of the front and rear glass substrates to cover the first and second electrodes, partitions formed on an upper surface of the dielectric layer of the rear glass substrate, red, green and blue fluorescent substances coated between the partitions, and a non-light emitting zone filling portion formed by filling a non-light emitting zone existing between the outermost one of the partitions and the sealing material with a material used for one of the partitions.
Abstract:
A display apparatus includes a display panel and a heat transfer sheet mounted adjacent to one surface of the display panel. A plurality of pores are formed in the heat transfer sheet. The heat transfer sheet may have an open cell-type structure and/or a closed cell-type structure. The open cell-type structure includes pores that are interconnected. The closed cell-type structure includes pores formed that are not in communication with each other, rather these pores may be independently formed.