Abstract:
A planar laser illumination module (PLIM) including: (i) a laser illumination source driven preferably by high frequency modulated (HFM) diode current drive circuitry; (ii) a beam collimating optics disposed beyond the laser illumination source; (ii) an optical beam multiplexer (OMUX) device disposed beyond the collimating optics; and (iv) a planarizing-type illumination lens array disposed beyond the OMUX device, and arranged for generating a plurality of substantially planar coherence-reduced laser illumination beams (PLIBs) that form a composite substantially planar laser illumination beam (PLIB) having substantially reduced spatial/temporal coherence.
Abstract:
A digital image capturing and processing system including an image formation and detection (IFD) subsystem having a linear image sensing array and optics providing a field of view (FOV) on the linear image sensing array. A spectral-mixing based illumination subsystem produces a first field of visible laser illumination produced from an array of visible VLDs, and a second field of invisible laser illumination produced from an array of IR laser diodes (LDs) that spatially overlap and intermix with each other so as to produce a composite planar laser illumination beam which is substantially with the FOV of the linear image sensing array. An illumination control subsystem controls the spectral mixing of visible and invisible laser illumination produced from the spectral-mixing based illumination subsystem, by adaptively controlling the relative power ratio (VIS/IR) of said fields of visible and invisible laser illumination. An image capturing and buffering subsystem captures and buffers images from the image sensing array. An automatic object detection subsystem automatically detects the an object moving through at least a portion of the FOV of the linear image sensing array, and generation a control activation signal. A control subsystem, responsive to the control activation signal, controls the operations of the subsystems within the illumination and imaging station.
Abstract:
Digital image capturing and processing network for use in a retail POS environment, comprising a plurality of digital image capturing systems, and a remote image processing server. Each digital image capturing system is installed at a POS station and includes a system housing having an imaging window and containing a plurality of coplanar illumination and imaging stations, for generating and projecting a complex of coplanar illumination and imaging planes through the imaging window, and into a 3D imaging volume definable relative to the imaging window, and producing digital images of objects passed through the 3D imaging volume. The remote image processing server is arranged in two-way data communication with each digital image capturing system, for (i) receiving and processing digital images produced by each digital image capturing system, (iI) performing at least one information abstraction process on the digital images, and (iIi) transmitting information back to the POS station regarding said information abstraction process.
Abstract:
An automatic digital image capturing and processing system for use in a POS environment, comprising a system housing having vertical housing section provided with an imaging window, and containing at least two area-type illumination and imaging stations for generating and projecting area-type illumination and imaging zones through the imaging window, so that the area-type illumination and imaging zones intersect within a 3D imaging volume definable relative to the imaging window. An object motion detection subsystem automatically detects the motion of objects passing through the 3D imaging volume, and generates motion data representative of detected object motion within the 3D imaging volume. And a control subsystem, responsive to the object motion detection subsystem, automatically controls operations within the area-type illumination and imaging stations during system operation. The area-type illumination and imaging zones intersect within the 3D imaging volume, and support automated illumination and imaging of objects passing therethrough, so that digital area-type images of the objects are automatically generated as objects pass through the area-type illumination and imaging zones within the 3D imaging volume during system operation.
Abstract:
A digital image capturing and processing system for installation at a retail POS environment comprising a system housing having an imaging window; and a plurality of coplanar illumination and imaging subsystems for projecting a plurality of coplanar illumination and imaging planes through a 3D imaging volume defined relative to the imaging window, for digital imaging of objects passing through the 3D imaging volume. A globally-deployed object motion detection subsystem automatically detects and analyzes the motion of an object passing through at least a portion of the 3D imaging volume, and generates object motion data in response thereto. Object motion data, including object velocity data, is used to generate control data for controlling the operation of the coplanar illumination and imaging subsystems.
Abstract:
Novel POS-based bar code symbol reading systems are disclosed having an integrated customer-kiosk terminal. Also disclosed are novel POS-based bar code reading cash register Systems having integrated Internet-enabled customer-kiosk terminals.
Abstract:
Digital image capturing and processing system comprising a digital image capturing and processing module, and an integrated electronic weigh scale module having a load cell that is centrally located with respect to the digital image capturing and processing module. The digital image capturing and processing module electrically interfaces with the electronic weigh scale module by way of touch-fit electrical inter-connectors that automatically establish all electrical interconnections between the two modules when the digital image capturing and processing module is placed onto the electronic weigh scale module, and the electronic load cell bears the weight of the digital image capturing and processing module.
Abstract:
A digital image capturing and processing system comprising a system housing having an imaging window, a plurality of coplanar illumination and imaging subsystems disposed in the system housing. Each coplanar illuminating and linear imaging station includes a dual-type coplanar linear illumination and imaging engine that supports automatic image formation and detection along each pair of coplanar illumination and imaging planes generated by the coplanar illuminating and linear imaging station. Each pair of coplanar illumination and imaging planes are projected into the 3D imaging volume, for capturing of linear digital images of objects moved therewithin, and subsequent processing thereof for recognizing information graphically represented in the captured linear digital images, and automatic imaging-processing based object motion and velocity detection within the 3D imaging volume.
Abstract:
An omni-directional bar code symbol reading system employing a plurality of coplanar illumination and imaging stations for generating and projecting a complex of coplanar illumination and imaging planes through an imaging window into a 3D imaging volume, through which object can be passed in flexible ways. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and requires no moving parts.
Abstract:
A bioptical holographic laser scanning system employing a plurality of laser scanning stations about a holographic scanning disc having scanning facets with high and low elevation angle characteristics, as well as positive, negative and zero skew angle characteristics which strategically cooperate with groups of beam folding mirrors having optimized surface geometry characteristics. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generate a 3-D omnidirectional laser scanning pattern between the bottom and side scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of pairs of quasi-orthogonal laser scanning planes, which include a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder-type bar code symbols) that are oriented substantially horizontal with respect to the bottom scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom scanning window.