Abstract:
A system is provided for reading and writing sectors which may be realized as either a disk device to the local operating system, or as a virtual disk device to a virtual machine. A user's computing environment is stored in the network in the form of a disk image, which may be a virtual disk image, for example. The virtual disk is realized on host computers through host-resident virtual machine monitors such as MICROSOFT VIRTUAL PC®. Portable memory devices, such as flash devices, buffer virtual disk writes and cache reads, greatly reducing the performance degradation associated with remote disk access. The cache is mobile so that it can be travel with the user. The flash device remembers commonly used virtual disk content fingerprints so that the host machine's local disk can be used to satisfy many common disk reads when ubiquitous static content is involved. Standard, frequently used software images might be distributed in advance to host machines. Flash disk contents are trickled back into the networked parent disk image in order to provide an automatic backup facility, adding the benefit of ensuring that the flash drive doesn't overflow.
Abstract:
Software control flow integrity is provided by embedding identifying bit patterns at computed control flow instruction sources and destinations. The sources and destinations of computed control flow instructions are determined with reference to a control flow graph. The identifying bit patterns are compared during software execution, and a match between a source and a respective destination ensures control flow consistent with the control flow graph. Security measures are implemented when the comparison results in a mismatch, indicating that control flow has deviated from the anticipated course.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for runtime language-independent sandboxing of software. In one aspect, a system implements an extended Software Fault Isolation (SFI) software sandboxing system configured to provide a user-mode program interface for receiving runtime requests for modifying verifiably safe executable machine code. Requests can include dynamic code creation, dynamic code deletion, and atomic modification of machine code instructions. A runtime modification of a verifiably safe executable memory region is made in response to each received runtime request, and code within the modified memory region has a guarantee of safe execution.
Abstract:
General-purpose distributed data-parallel computing using high-level computing languages is described. Data parallel portions of a sequential program that is written by a developer in a high-level language are automatically translated into a distributed execution plan. A set of extensions to a sequential high-level computing language are provided to support distributed parallel computations and to facilitate generation and optimization of distributed execution plans. The extensions are fully integrated with the programming language, thereby enabling developers to write sequential language programs using known constructs while providing the ability to invoke the extensions to enable better generation and optimization of the execution plan for a distributed computing environment.
Abstract:
Instruction set architecture (ISA) extension support is described for control-flow integrity (CFI) and for XFI memory protection. ISA replaces CFI guard code with single instructions. ISA support is provided for XFI in the form of bounds-check instructions. Compared to software guards, hardware support for CFI and XFI increases the efficiency and simplicity of enforcement. In addition, the semantics for CFI instructions allows more precise static control-flow graph encodings than were possible with a prior software CFI implementation.
Abstract:
Described herein are one or more implementations that facilitate message-passing over a communication conduit between software processes in a computing environment. More particularly, the implementations described restrict access of one process to another via messages passed over a particular conduit connecting the processes and the access-control restrictions are defined by a contract associated with that particular conduit.
Abstract:
General-purpose distributed data-parallel computing using high-level computing languages is described. Data parallel portions of a sequential program that is written by a developer in a high-level language are automatically translated into a distributed execution plan. A set of extensions to a sequential high-level computing language are provided to support distributed parallel computations and to facilitate generation and optimization of distributed execution plans. The extensions are fully integrated with the programming language, thereby enabling developers to write sequential language programs using known constructs while providing the ability to invoke the extensions to enable better generation and optimization of the execution plan for a distributed computing environment.
Abstract:
Hash tables comprising load factors of up to and above 97% are disclosed. The hash tables may be associated with three or more hash functions, each hash function being applied to a key to identify a location in a hash table. The load factor of a hash table may be increased, obviating any need to increase the size of the hash table to accommodate more insertions. Such increase in load factor may be accomplished by a combination of increasing the number of cells per bucket in a hash table and increasing the number of hash functions associated with the hash table.
Abstract:
A client-side enforcement mechanism may allow application security policies to be specified at a server in a programmatic manner. Servers may specify security policies as JavaScript functions included in a page returned by the server and run before other scripts. At runtime, and during initial loading, the functions are invoked by the client on each page modification to ensure the page conforms to the security policy. As such, before a mutation takes effect, the policy may transform that mutation and the code and data of the page. Replicated code execution may take place at both the client and the server where the server runs its own shadow copy of a client-side application in a trusted execution environment so that the server may check that the method calls coming from the client correspond to a correct execution of the client-side application The redundant execution at the client can be untrusted, but serves to improve the responsiveness and performance of the Web application.
Abstract:
A verifier performs static checks of machine code to ensure that the code will execute safely. After verification is performed, the code is executed. The code modules generated by the rewriter and verified by the verifier prevent runtime code modifications so that properties established by the verifier cannot be invalidated during execution. Guards ensure that control flows only as expected. Stack data that must be shared within a code module, and which may therefore be corrupted during execution, is placed on a separate data stack. Other stack data remains on the regular execution stack, called the control stack. Multiple memory accesses can be checked by a single memory-range guard, optimized for fast access to the most-frequently used memory.