Abstract:
A component includes a catalyst surface having regions of CeO2 and regions of MnO2 that contact the regions of CeO2. Said material pairings may provide an improved catalytic effect compared to pure oxides. Said surfaces can, for example, also be used in indoor air purification to reduce the ozone content. The surface can, for example, be applied by coating the component and processed by cold-gas spraying of, for example, particles made of MnO2, to which CeO2 is applied.
Abstract:
A component has a catalyst surface including metal regions and regions of MnO2 contacting the former, wherein the metal regions are made of Co and/or Sn and/or Zn (or alloys of said metals). Said material pairings achieve a significantly improved catalytic effect in comparison to the pure metals. Said surfaces can be used, for example, in room air purification for reducing ozone content. The surface can be applied, for example, by coating the component, wherein the metal region and the region of MnO2 are applied in two layers.
Abstract:
The surface of a component includes metallic fractions of Ag and/or Ni, touching MnO2 fractions which provide an antimicrobial effect. When using toxicologically safe Ni, these antimicrobial surfaces can be used in the food industry, for example. The surface can, for example, be applied by way of a coating on the component with the metallic fraction and the MnO2 fraction applied in two layers.
Abstract:
The embodiments include a method for producing a coating through cold gas spraying. In the process, particles according to the embodiments are used which contain a photocatalytic material. In order to improve the effect of this photocatalytic material (such as titanium dioxide), a reactive gas can be added to the cold gas stream, the reactive gas being activated by a radiation source not shown, for example by UV light, on the surface of the coating that forms. This makes it possible to, for example, dose titanium dioxide with nitrogen. This allows the production of in situ layers having advantageously high catalytic effectiveness. The use of cold gas spraying has the additional advantage in that the coating can be designed to contain pores that enlarge the surface available for catalysis.
Abstract:
The invention relates to a method for processing at least two workpieces by means of electrochemical treatment. During the method, the workpieces are provided as working electrodes in an electrolytic treatment solution inside of which a counter-electrode arrangement is assigned to each workpiece. One workpiece and the assigned counter-electrode arrangement form an electrolytic processing element. The electrolytic processing elements are connected in series.
Abstract:
The invention relates to a lamp, in particular a motor-vehicle headlight lamp, with a plastic part of which the surface is provided with a coating which contains at least one compound of a metal with oxygen or nitrogen. The coating has the effect of preventing gas emission from the plastic.
Abstract:
A hard material layer having a relatively low frictional resistance, which can be produced by impregnating the layer with a lubricant. Zirconium oxynitride layer, which has zirconium-, nitrogen- and oxygen-containing phase, is used as a hard material layer. The presence of the phase in the zirconium oxynitride layer leads to a perceptible reduction of the layer frictional resistance, such that further processing steps can advantageously be saved on coating of substrates, such a impregnation. The coating (26) can, for example, be applied on a tool (27), which is appropriate for metal-cutting machining a work piece (28). With the low frictional resistance, a dry machining of the work piece (28) can be executed with the tool. Another application is the coating of highly stressed components of fuel injection valve.