Abstract:
A fuel cell system and a reformer for a fuel cell system prevents backfire and improves efficiency of heat transfer. The fuel cell system includes a reformer generating hydrogen gas from fuel including hydrogen by a catalytic chemical reaction using heat energy, and at least one electricity generating unit generating electrical energy by an electrochemical reaction between the hydrogen gas and oxygen. The reformer includes a case, a heat source, and a reforming reaction part. The case forms an external shape. The heat source is disposed in the case to generate heat energy by an oxidation reaction between fuel and a catalyst, and includes a mesh, an oxidation catalyst layer formed on a surface of the mesh, and at least one fuel injection nozzle supplying the fuel to the oxidation catalyst layer. The reforming reaction part is disposed in the case to generate hydrogen gas from fuel using the heat energy generated from the heat source.
Abstract:
A carbon monoxide treatment apparatus according to an exemplary embodiment of the present invention includes: a reactor body; a partitioning plate located inside the reactor body for partitioning an internal space of the reactor body into a first section and a second section; a channel member in the first section for transporting an introduced gas including a reformed gas and an oxidant gas to the second section; and a reaction unit around the channel member of the first section for reducing a concentration level of carbon monoxide in the introduced gas moving through the first section by utilizing a preferential oxidation reaction of the carbon monoxide and the oxidant gas of the introduced gas, wherein moisture of the introduced gas that has been partially condensed when passing through the channel member is stored in the second section.
Abstract:
The present invention relates to a reaction vessel for fuel cells, and more particular to a reaction vessel capable of obtaining reaction temperature promptly at the time of initial operation and a reaction device to form a reforming device of the fuel cell using the same. The reaction device of the present invention includes a reaction vessel that includes a monolithic chain. The monolithic chain has a first wall, a second wall, and a layer of pleats interposed between the first wall and the second wall. A plurality of openings are formed on each of the top side and the bottom side of the monolithic chain. One of the first wall and the second wall being made of an insulating material. The layer of pleats is made of a conductive material, and electric power is applied to generate heat at initial reaction operation. Once the reaction is activated, the reaction vessel produces heat through an oxidation reaction.
Abstract:
A reforming reaction unit for a reformer, and a method of manufacturing the same are disclosed. One embodiment of the reforming reaction unit includes: a cylindrical structure having a hollow space inside thereof; a cover surrounding the outer surface of the cylindrical structure; and a disc plate having a plurality of holes and directly contacting the inner surface of the cover at a predetermined position of the cylindrical structure in a lengthwise direction. The cylindrical structure includes an upper part above the disc plate. The upper part has a thread formed on its outer surface. The thread is in direct contact with the inner surface of the cover. The cylindrical structure also includes a lower part below the disc plate. The lower part has an outer surface spaced apart from the inner surface of the cover.
Abstract:
Disclosed is a reformer for a fuel cell. The reformer for a fuel cell includes a reforming reactor generating reformed gas having abundant hydrogen gas by reforming fuel and steam and a standing shape of a water gas shift reactor coupled to the reforming reactor for lowering the concentration of carbon monoxide contained in the reformed gas. The water gas shift reactor has an opening. A pipe is coupled to the opening and has a portion located below the opening. Liquid water which may stay in the inside at the time that the operation stops can be drained out of the water gas shift reactor to prevent the water gas shift catalyst from being submerged in liquid water.
Abstract:
A plate-type heat exchanger for use in a fuel cell system that has a fuel cell stack and a reformer is provided. The heat exchanger includes a substrate and a pair of cover plates. The substrate has a first face and a second face opposite to the first face. The substrate is disposed between the cover plates, and combined with the cover plates to form a first passageway and a second passageway. The first passageway is formed in the first face and circulates steam discharged from the fuel cell stack. The steam or water condensed from the steam is supplied to a water supply source. The second passageway is formed in the second face, and circulates water supplied from the water supply source. The water is supplied to the reformer after the circulation. The heat exchanger of the present invention improves performance and efficiency of a fuel cell system.
Abstract:
A carbon monoxide treatment apparatus according to an exemplary embodiment of the present invention includes: a reactor body; a partitioning plate located inside the reactor body for partitioning an internal space of the reactor body into a first section and a second section; a channel member in the first section for transporting an introduced gas including a reformed gas and an oxidant gas to the second section; and a reaction unit around the channel member of the first section for reducing a concentration level of carbon monoxide in the introduced gas moving through the first section by utilizing a preferential oxidation reaction of the carbon monoxide and the oxidant gas of the introduced gas, wherein moisture of the introduced gas that has been partially condensed when passing through the channel member is stored in the second section.
Abstract:
A heater for heating a reformer of a fuel cell system includes a combustion chamber having a combustion catalyst layer; a distributor having an inner space and uniformly distributing a combustion fuel and an oxidant flowing along the inner space to the combustion catalyst layer of the combustion chamber; and an igniter igniting the combustion fuel and the oxidant, wherein the igniter is placed in the inner space of the distributor. Thus, the igniter is protected from combustion heat of the combustion catalyst layer and thus has improved durability.
Abstract:
A fuel reforming apparatus includes an oxidation reaction unit in which an oxidation catalyst is formed, a reforming reaction unit in which a reforming catalyst is formed, and an ignition unit for igniting a hydrocarbon-containing fuel and an oxidant and preheating the oxidation catalyst in an early driving stage. The oxidation reaction unit has a first section and a second section respectively formed opposite to each other with the oxidation catalyst interposed therebetween and forms a stream of the fuel and the oxidant flowing to the second section through the oxidation catalyst from the first section, the ignition unit being located in the second section.
Abstract:
The reformer for a fuel cell system includes a reforming reaction part that generates hydrogen gas from a fuel through a catalyst reforming reaction using heat energy, and a carbon monoxide reducing part that reduces the concentration of carbon monoxide in the hydrogen gas, through an oxidizing reaction of hydrogen gas with the oxidant. The carbon monoxide reducing part includes a first reducing part including a first carbon monoxide oxidizing catalyst and a second reducing part including a second carbon monoxide oxidizing catalyst.