Abstract:
A photonic integrated circuit (PIC) may be optically aligned to a plurality of optical components (e.g., an optical fiber array). Optical alignment may be facilitated by the use of an optical impedance element coupled between a first input/output (I/O) optical waveguide and a second I/O optical waveguide of the PIC. The optical impedance element me be configured to be transmissive during optical alignment and to be non-transmissive during the regular operation of the PIC.
Abstract:
Structures and methods for passively aligning a photonic die with a receiving substrate are described. Three alignment surfaces, having dimensions greater than a desired alignment accuracy, may be formed on the photonic die and used to passively and accurately align the photonic die to a receiving substrate in six degrees of freedom. Two of the three alignment surfaces on the photonic die may be formed in a single mask-and-etch process, while the third alignment surface may require no patterning or etching. Three complementary alignment surfaces on the receiving substrate may be formed in a single mask-and-etch process.
Abstract:
Disclosed herein are designs, structures and techniques for advanced packaging of multi-function photonic integrated circuits that allow such high-performance multi-function photonic integrated circuits to be co-packaged with a high-performance multi-function ASIC thereby significantly reducing strenuous interconnect challenges and lowering costs, power and size of the overall devices.
Abstract:
Disclosed herein are co-packaging structures, devices, and methods for integrating a photonic integrated circuit (PIC), an electronic integrated circuit including drivers and transimpedance amplifiers (TIAs) and an ASIC having analog-to-digital converters and a digital signal processor positioned on a common (the same) carrier thereby resulting in a compact coherent transceiver while lowering its cost.