Abstract:
New 6xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 6xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 6xxx aluminum alloy bodies may realize improved strength and other properties.
Abstract:
New 6xxx aluminum alloys are disclosed. The new 6xxx aluminum alloys may include 1.05-1.50 wt. Mg, 0.60-0.95 wt. % Si, where the (wt. % Mg)/(wt. % Si) is from 1.30 to 1.90, 0.275-0.50 wt. % Cu, and from 0.05 to 1.0 wt. % of at least one secondary element, wherein the secondary element is selected from the group consisting of V, Fe, Cr, Mn, Zr, Ti, and combinations thereof.
Abstract:
New wrought 7xxx aluminum alloys are disclosed. The new wrought 7xxx aluminum alloys generally include from 3.75 to 8.0 wt. % Zn, from 1.25 to 3.0 wt. % Mg, where the wt. % Zn exceeds the wt. % Mg, from 0.35 to 1.35 wt. % Cu, from 0.04 to 0.20 wt. % V, from 0.06 to 0.20 wt. % Zr, where V+Zr≦0.23 wt. %, from 0.01 to 0.25 wt. % Ti, up to 0.50 wt. % Mn, up to 0.40 wt. % Cr, up to 0.35 wt. % Fe, and up to 0.25 wt. % Si, the balance being aluminum and impurities, wherein the wrought 7xxx aluminum alloy include not greater than 0.10 wt. % each of any one impurity, and wherein the wrought 7xxx aluminum alloy includes not greater than 0.35 wt. % in total of the impurities.
Abstract:
New 6xxx aluminum alloys are disclosed. The new 6xxx aluminum alloys may include 1.05-1.50 wt. Mg, 0.60-0.95 wt. % Si, where the (wt. % Mg)/(wt. % Si) is from 1.30 to 1.90, 0.275-0.50 wt. % Cu, and from 0.05 to 1.0 wt. % of at least one secondary element, wherein the secondary element is selected from the group consisting of V, Fe, Cr, Mn, Zr, Ti, and combinations thereof.
Abstract:
New 6xxx aluminum alloys are disclosed. The new 6xxx aluminum alloys may include 1.05-1.50 wt. Mg, 0.60-0.95 wt. % Si, where the (wt. % Mg)/(wt. % Si) is from 1.30 to 1.90, 0.275-0.50 wt. % Cu, and from 0.05 to 1.0 wt. % of at least one secondary element, wherein the secondary element is selected from the group consisting of V, Fe, Cr, Mn, Zr, Ti, and combinations thereof.
Abstract:
A method comprises fusion welding a filler metal to a first aluminum component; wherein the first aluminum component comprises a 7xxx series aluminum alloy; and wherein the filler metal comprises an aluminum alloy, in weight percent: up to 0.15 Fe; up to 0.15 Si; from 2.3 to 2.7 Mg; from 1.4 to 1.8 Cu; from 6.0 to 9.0 Zn; and from 0.06 to 0.14 Zr. In some embodiments, the 7xxx series aluminum alloy comprises 0.5-2.6 wt. % Cu. In some embodiments, the filler metal comprises, in weight percent, up to 0.45 Sc.
Abstract:
Aluminum alloy products about 4 inches thick or less that possesses the ability to achieve, when solution heat treated, quenched, and artificially aged, and in parts made from the products, an improved combination of strength, fracture toughness and corrosion resistance, the alloy consisting essentially of: about 6.8 to about 8.5 wt. % Zn, about 1.5 to about 2.00 wt. % Mg, about 1.75 to about 2.3 wt. % Cu; about 0.05 to about 0.3 wt. % Zr, less than about 0.1 wt. % Mn, less than about 0.05 wt. % Cr, the balance Al, incidental elements and impurities and a method for making same. The instantly disclosed alloys are useful in making structural members for commercial airplanes including, but not limited to, upper wing skins and stringers, spar caps, spar webs and ribs of either built-up or integral construction.
Abstract:
New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.
Abstract:
New aluminum casting alloys having 8.5-9.5 wt. % silicon, 0.8-2.0 wt. % copper (Cu), 0.20-0.53 wt. % magnesium (Mg), and 0.35 to 0.8 wt. % manganese are disclosed. The alloy may be solution heat treated, treated in accordance with T5 tempering and/or artificially aged to produce castings, e.g., for cylinder heads and engine blocks. In one embodiment, the castings are made by high pressure die casting.
Abstract:
New 2xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 2xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 2xxx aluminum alloy bodies may realize improved strength and other properties.