Abstract:
Electronic device components that include a glass portion and a ceramic or a glass ceramic portion are disclosed. The ceramic or glass ceramic portions of the component may be located to provide desired performance characteristics to the component, which may be an enclosure component. In addition, regions of compressive stress may be formed within the glass portion, the glass ceramic portion, or both to further adjust the performance characteristics of the component. Electronic devices including the components and methods for making the components are also provided.
Abstract:
A window or other component may have glass layers and an interposed polymer layer in which a textured light-scattering layer with a diffuse reflectivity is embedded. The textured light-scattering layer may have a textured polymer carrier film coated with a partially reflective layer such as a metal layer. The polymer carrier film may be textured to cause gaps to form within the partially reflective layer. The gaps may be patterned to form ohmic heating current paths or other signal paths through the partially reflective layer. The partially reflective layer may also serve as an electrode in a light modulator such as a liquid crystal light modulator or other light modulator. Images may be projected onto the textured light-scattering layer. The light-scattering layer may also help extract light from a light guiding layer adjacent to the partially reflective layer.
Abstract:
Electronic devices including a display layer and a cover layer including a foldable region are disclosed herein. The display layer and the cover layer are configured to be moved between a folded configuration and an unfolded configuration by bending the cover layer along the foldable region. Methods of making a cover layer for an electronic device are also disclosed.
Abstract:
A system for heat treating sapphire components to increase strength while maintaining the optical finish and/or transparency of the component. The system may include a fixture positioned in a furnace and configured to suspend an array or group of sapphire components. The fixture may include notches or other features to assist in locating and positioning the sapphire components. Shield elements or enclosures may also be interspersed with the sapphire components and may help produce a more uniform heat distribution and protect the sapphire components from emissions or deposits. Some aspects are directed to a sleeve tool and fixture jig that can be used to assemble the sapphire components onto the fixture in a way that reduces the risk of marring or otherwise damaging the sapphire components.
Abstract:
Methods and systems for localized strengthening of features of a component formed from a sapphire material include a combination of holistic heating and localized surface heating. In one example, the localized heating may occur via laser thermal, flame polishing, hot wire heating, plasma etching, or chemical treatment. By combining the localized surface heating with holistic heating, near-melt or melt processing in a localized area can be achieved while avoiding overheating of well-polished areas, and therefore minimizing defects that would otherwise be caused by excessive heating. This may be used for strengthening features of components formed from sapphire material that are difficult to polish, such as non-planar features.
Abstract:
A sapphire sheet is laminated to a glass sheet with a gradient layer that transitions from a composition of predominantly Al2O3 at the sapphire sheet to a composition of predominantly SiO2 at the glass sheet. The gradient layer chemically bonds to both the sapphire sheet and the glass sheet and has no distinct interfaces.
Abstract:
An electronic device comprises a housing, a display coupled to the housing, and a protective cover coupled to the housing and covering the display. The protective cover comprises a transparent layer having a first surface facing the display and a second surface opposite the first surface. The protective cover also comprises a sapphire layer having a third surface corresponding to an exterior surface of the electronic device. The sapphire layer also has a fourth surface opposite the third surface and bonded to the second surface of the transparent layer via intermolecular forces.
Abstract:
An electronic device can include a housing defining an aperture, and an electromagnetic radiation emitter and an electromagnetic radiation detector disposed in the housing. An optical component can be disposed in the aperture and can include a first region of a first material having a first index of refraction, the first region aligned with the electromagnetic radiation emitter, a second region of the first material, the second region aligned with the electromagnetic radiation detector, and a bulk region surrounding a periphery of the first region and a periphery of the second region, the bulk region including a second material having a second index of refraction that is lower than the first index of refraction.
Abstract:
A system such as a vehicle may have adjustable structures such as adjustable windows. Adjustable windows may have adjustable layers such as adjustable tint layers, adjustable reflectivity layers, and adjustable haze layers. Adjustable window layers may be incorporated into a window with one or more transparent structural layers such as a pair of glass window layers. Adjustable components such as adjustable reflectivity layers, adjustable haze layers, and adjustable tint layers may be interposed between the pair of glass window layers. Fixed partially reflective mirrors, fixed tint layers, and/or fixed haze layers may be used in place of adjustable tint, haze, and reflectivity layers and/or may be incorporated into windows in addition to adjustable tint, haze, and reflectivity layers.
Abstract:
Electronic devices including a display layer and a cover layer including a foldable region are disclosed herein. The display layer and the cover layer are configured to be moved between a folded configuration and an unfolded configuration by bending the cover layer along the foldable region. Methods of making a cover layer for an electronic device are also disclosed.