Abstract:
A method performed by an audio source device. The method obtains an input audio signal and determines a sound output level of a headset based on the input audio signal, a user volume setting, and a sound output sensitivity of the headset. The method determines whether the sound output level is above a threshold. In response to determining that the sound output level is above the threshold, a scalar gain is applied upon the input audio signal to produce an output audio signal for output by the headset.
Abstract:
An electronic device receives a first set of one or more inputs corresponding to user interface elements displayed on the display and a first set of one or more tactile outputs, and also receives a second set of one or more inputs corresponding to one or more hardware elements and a second set of one or more tactile outputs. In response, in accordance with a determination that the first set of one or more tactile outputs and the second set of one or more tactile outputs overlap, the device outputs, with one or more tactile output generators, a modified tactile output sequence that is modified so as to emphasize the second set of one or more tactile outputs relative to the first set of one or more tactile outputs.
Abstract:
Method of improving audio signal in the spectral domain starts by receiving audio signal that includes signals from sources including speech source and music source. Audio signal is tuned for output by sound output device. Portions of audio signal are analyzed in a spectral domain to determine whether adjustments are required. Analyzing portions of audio signal includes determining whether anomaly is present in frequency band of audio signal in spectral domain by using at least one metric. Metrics include band energy ratios, spectral centroid, spectral tilt, spectral flux, spectral variance, absolute thresholds, and relative thresholds. Audio signal is adjusted to improve audio signal in spectral domain when audio signal is determined to require adjustments. Adjusting audio signal includes adjusting values of the metric in frequency band that is determined to include anomaly to correspond to clustering of metric values for audio signal in spectral domain. Other embodiments are also described.
Abstract:
Devices and methods for power management during media playback are provided. For example, an electronic device according to an embodiment may include storage, a decoder, an output buffer, and data processing circuitry. The storage may store compressed media data that may be decoded by the decoder. The output buffer may store the decoded media data before the decoded media data is played out. The data processing circuitry configured may measure a fullness of the output buffer and may set an operating frequency of the storage, the decoder, the output buffer, or the data processing circuitry, or a combination thereof, depending on a format of the compressed media data and the fullness of the output buffer.
Abstract:
A multi-band audio compressor that may provide not only better and brighter sound, but also speaker protection. The multi-band audio compressor breaks an input audio signal into different frequency bands. For each band signal, a volume re-mapper translates a user preference volume level to a converted volume level based on a programmable volume curve for the band signal. For each frequency band, the band signal is processed by a gain stage and a compressor. Each gain stage applies a signal gain to the band signal based on the converted volume level. Each compressor compresses the output of the gain stage. After compression, the different frequency band signals are re-combined and the combined audio signal may then be passed to a power amplifier that is driving a speaker. Other embodiments are also described and claimed.
Abstract:
A multi-band audio compressor that may provide not only better and brighter sound, but also speaker protection. The multi-band audio compressor breaks an input audio signal into different frequency bands. For each band signal, a volume re-mapper translates a user preference volume level to a converted volume level based on a programmable volume curve for the band signal. For each frequency band, the band signal is processed by a gain stage and a compressor. Each gain stage applies a signal gain to the band signal based on the converted volume level. Each compressor compresses the output of the gain stage. After compression, the different frequency band signals are re-combined and the combined audio signal may then be passed to a power amplifier that is driving a speaker. Other embodiments are also described and claimed.
Abstract:
Method of dynamically adapting user volume input range on mobile device having global volume range starts by receiving a volume input selection from a user that is level included in user volume input range. User volume input range is a portion of global volume range. Device's processor then detects ambient noise level surrounding device and adjusts user volume input range from current portion of global volume range to different portion of global volume range based on detected ambient noise level. Volume input selection remains at the same level included in user volume input range after user volume input range is adjusted. Processor may identify sound profile that corresponds to ambient noise level being detected and adjusts user volume input range to a different portion of the global volume range based on identified sound profile. Other embodiments are also described.