Abstract:
A method for reducing power consumption in connected mode discontinuous reception is disclosed. The method can include a wireless communication device sending a transmission for a pending HARQ retransmission process and receiving an ACK for the transmission. The method can further include the wireless communication device determining a subset of remaining uplink transmission opportunities in the pending HARQ retransmission process to monitor for an uplink grant in response to receiving the ACK and monitoring the subset of remaining uplink transmission opportunities for an uplink grant. The method can additionally include the wireless communication device entering a sleep state for any uplink transmission opportunities remaining in the pending HARQ retransmission process after monitoring the subset of remaining uplink transmission opportunities in an instance in which an uplink grant for the pending HARQ retransmission process is not received for any of the subset of remaining uplink transmission opportunities.
Abstract:
In an example method, a system receives a plurality of frames of a video, and generates a data structure representing the video and representing a plurality of temporal layers. Generating the data structure includes: (i) determining a plurality of quality levels for presenting the video, where each of the quality levels corresponds to a different respective sampling period for sampling the frames of the video, (ii) assigning, based on the sampling periods, each of the frames to a respective one of the temporal layers of the data structure, and (iii) indicating, in the data structure, one or more relationships between (a) at least one the frames assigned to at least one of the temporal layers of the data structure, and (b) at least another one of the frames assigned to at least another one of the temporal layers of the data structure. Further, the system outputs the data structure.
Abstract:
In an example method, a system receives a plurality of frames of a video, and generates a data structure representing the video and representing a plurality of temporal layers. Generating the data structure includes: (i) determining a plurality of quality levels for presenting the video, where each of the quality levels corresponds to a different respective sampling period for sampling the frames of the video, (ii) assigning, based on the sampling periods, each of the frames to a respective one of the temporal layers of the data structure, and (iii) indicating, in the data structure, one or more relationships between (a) at least one the frames assigned to at least one of the temporal layers of the data structure, and (b) at least another one of the frames assigned to at least another one of the temporal layers of the data structure. Further, the system outputs the data structure.
Abstract:
A method and apparatus of a device that uses a video jitter buffer to buffer the video frames for a received video stream is described. The device uses the video jitter buffer to estimate the delay variability of the frames and pick a target delay that will help harmonize the playback with minimal loss and delay. This is achieved by estimating the delay spread, which is the result of performing statistical analysis of the measured lags of the video frames received. The video jitter buffer provides target delay recommendation and reference frame information to the video player in order to anchor the playback and schedule the frames presentation time.
Abstract:
Methods and apparatus to manage communication sessions to handover between a direct connection at a secondary wireless device and a relayed connection to the secondary wireless device via a primary wireless device. A connection manager of a secondary wireless device can trigger transfer of a communication session based on measurements of performance metrics for the communication session. Upon detection of performance degradation in a local connection or a backhaul connection or both, the connection manager of the secondary wireless device can determine proximity of and/or capabilities for connections of the primary wireless device and instigate transfer of the communication session between different connection types, such as between a direct connection and a relayed connection. The transfer of the communication session can occur without user intervention or in response to input from the user without interrupting or reestablishing the communication session.
Abstract:
A user equipment (“UE”) connected to a first network that performs methods including receiving a page from the first network indicating an incoming voice call, when it is determined the voice call was not successfully connected, incrementing a value of a counter and when the value satisfies the threshold, switching from the first network to a second network. Another method includes originating a voice call via the first network, when it is determined the voice call was not successfully connected, opening a socket connection with the first network and attempting to re-originate the voice call via the first network. Another method includes determining whether the UE has switched a connection from a first network to a second network and when it is determined that the UE has switched the connection to the second network, initiating an action by the UE.
Abstract:
In video conferencing over a radio network, the radio equipment is a major power consumer especially in cellular networks such as LTE. In order to reduce the radio power consumption in video conferencing, it is important to introduce an enough radio inactive time. Several types of data buffering and bundling can be employed within a reasonable range of latency that doesn't significantly disrupt the real-time nature of video conferencing. In addition, the data transmission can be synchronized to the data reception in a controlled manner, which can result in an even longer radio inactive time and thus take advantage of radio power saving modes such as LTE C-DRX.
Abstract:
A user equipment (“UE”) connected to a first network that performs methods including receiving a page from the first network indicating an incoming voice call, when it is determined the voice call was not successfully connected, incrementing a value of a counter and when the value satisfies the threshold, switching from the first network to a second network. Another method includes originating a voice call via the first network, when it is determined the voice call was not successfully connected, opening a socket connection with the first network and attempting to re-originate the voice call via the first network. Another method includes determining whether the UE has switched a connection from a first network to a second network and when it is determined that the UE has switched the connection to the second network, initiating an action by the
Abstract:
In video conferencing over a radio network, the radio equipment is a major power consumer especially in cellular networks such as LTE. In order to reduce the radio power consumption in video conferencing, it is important to introduce an enough radio inactive time. Several types of data buffering and bundling can be employed within a reasonable range of latency that doesn't significantly disrupt the real-time nature of video conferencing. In addition, the data transmission can be synchronized to the data reception in a controlled manner, which can result in an even longer radio inactive time and thus take advantage of radio power saving modes such as LTE C-DRX.