Abstract:
An electronic device may include a display having an array of display pixels. Storage and processing circuitry may generate display data for the display in an RGB input color space. The display may display the display data in an RGBW output color space. Display control circuitry may use sets of predetermined conversion factors to convert display data from the RGB input color space to the RGBW output color space without requiring conversion to a device-independent color space. Each set of predetermined conversion factors may be associated with a color in a set of predetermined colors. Using the sets of predetermined conversion factors, the display control circuitry may convert RGB values in the input color space to RGBW values in the output color space. The display control circuitry may supply data signals corresponding to the display data in the RGBW output color space to the array of display pixels.
Abstract:
A method and system are provided for compensating for brightness changes in a display having an array of display pixels. The method includes storing a plurality of look-up tables, where each table has a plurality of brightness signals that provide compensation for a brightness change when the refresh rate is changed during a panel self-refresh. The method also includes using display control circuitry to determine the refresh rate associated with an input signal and to determine a compensation based on the refresh rate. The display control circuitry may, for example, use non-linear interpolation to generate a look-up table for the refresh rate. The display control circuitry may adjust the input signal based on the look-up table to produce an output signal that compensates for a brightness change at the refresh rate. The output signal may be transmitted to the array of display pixels.
Abstract:
A method is provided for compensating for brightness change in a display. The method includes storing a plurality of look-up tables (LUTs), where each table has a plurality of pixel levels at a variable refresh rate (VRR) and a plurality of brightness signals that provide compensation for the brightness change when refresh rate is changed during a panel self-refresh (PSR). The method also includes receiving an input signal from a graphics processing unit (GPU) and determining the VRR of the input signal from the GPU. The method further includes obtaining the LUT at the determined VRR of the input signal and adjusting the input signal to produce an output signal that compensates for the brightness change for each pixel or sub-pixel in a timing controller based upon the LUT at the determined VRR. The method further includes transmitting the output signal to the display. A system is also provided.
Abstract:
The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
Abstract:
An electronic device may include a display and display control circuitry. The display may be calibrated to compensate for changes in display temperature. Display calibration information may be obtained during manufacturing and may be stored in the electronic device. The display calibration information may include color-specific adjustment factors configured to adjust display colors and reduce temperature-related color shifts. During operation of the display, the display control circuitry may receive input pixel values for a display pixel. The display control circuitry may also receive display temperature information from a temperature sensor in the electronic device. The display control circuitry may determine adjustment factors based on a color associated with the input pixel values and the display temperature information. The display control circuitry may apply the adjustment factors to the input pixel values to obtain adapted pixel values. The adapted pixel values may be provided to the display pixel.
Abstract:
An electronic device may include a display and display control circuitry. The display may be calibrated to compensate for changes in display temperature. Display calibration information may be obtained during manufacturing and may be stored in the electronic device. The display calibration information may include adjustment factors configured to adjust incoming pixel values to reduce temperature-related color shifts. During operation of the electronic device, display control circuitry may determine the temperature at different locations on the display. The display control circuitry may determine the temperature at a given display pixel using the temperatures at the different locations on the display. The display control circuitry may determine adjustment values based on the temperature at the display pixel. The display control circuitry may apply the adjustment values to incoming pixel values to obtain adapted pixel values, which may in turn be provided to the display pixel.
Abstract:
A display may have a pixel array such as a liquid crystal pixel array. The pixel array may be illuminated by a backlight unit that includes an array of light-emitting diodes. A backlight brightness selection circuit may select brightness values for the light-emitting diodes. The backlight brightness selection circuit may select the brightness values based on image data, based on brightness values used in previous image frames, based on device information, and/or based on sensor information. The backlight brightness selection circuit may select the backlight brightness levels to mitigate visible artifacts such as flickering and halo. The backlight levels selected by the backlight brightness selection may be modified by a power consumption compensation circuit. The power consumption compensation circuit may estimate the amount of power consumption required to operate the backlight using the target brightness levels and may modify the target brightness levels to meet maximum power consumption requirements.
Abstract:
Aspects of the subject technology relate to electronic devices with displays and ambient light sensors. An electronic device modifies the color of images to be displayed based on measured ambient light color. The modification is performed in a perceptually uniform color space and includes a determination of a bleaching effect of reflected ambient light, and a determination of a color correction factor to be applied within the perceptually uniform color space, based on the determined bleaching effect. The modification may also include an application of a strength factor that mitigates out-of-gamut colors in color compensated images.
Abstract:
Systems and methods for improving perceived image quality of an electronic display, which includes a display region with a rounded border and a display pixel at a pixel position adjacent the rounded border. A display pipeline communicatively coupled to the electronic display receives first image data that indicates target luminance at the pixel position in a rectangular image frame; determines a gain value associated with the pixel position from a gain map, in which the gain value is inversely proportional to distance between the display pixel and the rounded border; determines second image data that indicates target luminance of the display pixel by processing the first image data based at least in part on the gain value; and outputs the second image data to the electronic display to facilitate displaying a non-rectangular portion of the image frame on the display region.
Abstract:
Systems, methods, and devices are provided to reduce a likelihood of image burn-in on an electronic display. Such an electronic device may include image processing circuitry and an electronic display. The image processing circuitry may receive image data and analyze the image data for risk of image burn-in and, based at least in part on the analysis of the image data, reduce a risk of image burn-in at least in part by reducing a local maximum pixel luminance value in at least one of a plurality of regions of the image data over time or by reducing a dynamic range headroom of the image data. The electronic display may display the image data with a reduced risk of image burn-in on the pixels of the electronic display.