Abstract:
An analog to digital conversion circuit receives a transducer output signal and outputs a data bitstream, where a latch or flip flop has an input that receives a clock signal. An AC-DC power converter receives the clock signal and produces a DC voltage which may power the analog to digital conversion circuit. The AC-DC power converter has a rectifier, an energy store and a voltage regulator, charge pump or filter, which draws power from the energy store to produce the DC voltage. A control circuit delays replenishment of the energy store by the rectified clock signal, responsive to the clock signal. Other embodiments are also described and claimed.
Abstract:
An analog to digital conversion circuit receives a transducer output signal and outputs a data bitstream, where a latch or flip flop has an input that receives a clock signal. An AC-DC power converter receives the clock signal and produces a DC voltage which may power the analog to digital conversion circuit. The AC-DC power converter has a rectifier, an energy store and a voltage regulator, charge pump or filter, which draws power from the energy store to produce the DC voltage. A control circuit delays replenishment of the energy store by the rectified clock signal, responsive to the clock signal. Other embodiments are also described and claimed.
Abstract:
An excitation signal is produced on a plate of an unknown capacitor and on a plate of a known capacitor. The excitation signal is amplified over time to produce a first output signal, with gain that is proportional to capacitance of the unknown capacitor. The excitation signal is also amplified over time to produce a second output signal, with gain that is proportional to capacitance of the known capacitor. Capacitance of the unknown capacitor is computed using a mathematical function of the first and second output signals and the capacitance of the known capacitor, while being insensitive to amplitude of the excitation signal. Other embodiments are also described and claimed.
Abstract:
A charge pump circuit having first and second input nodes to be coupled to a first power source, and top and bottom output nodes and an intermediate node. The charge pump circuit produces i) a voltage at the top output node that is higher than a voltage of the intermediate node, and ii) a voltage at the bottom output node that is lower than the voltage of the intermediate node. A bias voltage source has i) an input that is to be coupled to a second power source and ii) an output that produces an output voltage, which is a predetermined proportion of an input voltage at the input and that follows the input voltage downward and upward as the input voltage sags and recovers, respectively. The output of the bias voltage source is directly connected to the intermediate node of the output stage. Other embodiments are also described.
Abstract:
A programmed data processor obtains a number of input voltage measurements for a number of speaker drivers, respectively, and a sensed shared current being a measure of current in a single power supply rail that is feeding power to each of a number of audio amplifiers while the audio amplifiers are driving the speaker drivers in accordance with a number of audio channel test signals, respectively. The programmed data processor computes an estimate of electrical input impedance of each of the speaker drivers using the input voltage measurement for the speaker driver and using the sensed shared current. Other embodiments are also described and claimed.
Abstract:
A programmed data processor receives input voltage measurements for a number of speaker drivers, wherein each of the voltage measurements may be a sensed or estimated sequence of time-domain samples of a respective speaker driver input voltage that is over a different time frame. The processor obtains a sensed shared current, being a measure of current in a single power supply rail that is feeding power to each of a number of audio amplifiers, while the audio amplifiers are driving the speaker drivers in accordance with a number of audio channel signals, respectively. The processor computes an estimate of electrical input impedance for each of the speaker drivers using the sensed shared current and the input voltage measurements. Other embodiments are also described and claimed.
Abstract:
An electronic device having an enclosure having a top panel and a bottom panel. An electromagnet is mounted within the enclosure, the electromagnet having a core portion attached to the top panel and a coil connected to the core portion. An attractor plate is attached to the bottom panel, the attractor plate forming part of a magnetic circuit of the electromagnet such that when an electrical audio signal is applied to the electromagnet, the bottom panel vibrates and produces a sound. A permanent magnet is further attached to the core portion, the permanent magnet is configured to create a bias in the magnetic circuit so as to modify a distortion in the sound.
Abstract:
An electronic device having an enclosure having a top panel and a bottom panel. An electromagnet is mounted within the enclosure, the electromagnet having a core portion attached to the top panel and a coil connected to the core portion. An attractor plate is attached to the bottom panel, the attractor plate forming part of a magnetic circuit of the electromagnet such that when an electrical audio signal is applied to the electromagnet, the bottom panel vibrates and produces a sound. A permanent magnet is further attached to the core portion, the permanent magnet is configured to create a bias in the magnetic circuit so as to modify a distortion in the sound.