Abstract:
In an embodiment, a system is provided in which the private key is managed in hardware and is not visible to software. The system may provide hardware support for public key generation, digital signature generation, encryption/decryption, and large random prime number generation without revealing the private key to software. The private key may thus be more secure than software-based versions. In an embodiment, the private key and the hardware that has access to the private key may be integrated onto the same semiconductor substrate as an integrated circuit (e.g. a system on a chip (SOC)). The private key may not be available outside of the integrated circuit, and thus a nefarious third party faces high hurdles in attempting to obtain the private key.
Abstract:
An apparatus, a method, and a system are presented in which the apparatus includes an interface control circuit that may be configured to receive a message including a cryptographic keyword and a policy value. The policy value may include one or more data bits indicative of one or more policies that define allowable usage of the cryptographic keyword. The apparatus also includes a security circuit that may be configured to extract the cryptographic keyword and the policy value from the message, and to apply at least one policy of the one or more policies to usage of the cryptographic keyword in response to a determination that an authentication of the message succeeded.
Abstract:
A system and method for managing idleness of functional units in an IC is disclosed. An IC includes a subsystem having a number of functional units and an idle aggregation unit. When a particular functional unit determines that it is idle, it may assert an idle indication to the idle aggregation unit. When the respective idle indications are concurrently asserted for all of the functional units, the idle aggregation unit may assert and provide respective idle request signals to each of the functional units. Responsive to receiving an idle request unit, a given functional unit may provide an acknowledgement signal to the idle aggregation unit if no transactions are incoming. If all functional units have concurrently asserted their respective acknowledgement signals, the idle aggregation unit may provide an indication of the same to a clock gating unit, which may then gate the clock signal(s) received by the functional units.
Abstract:
An apparatus may include first and second clock monitors. The first clock monitor may be configured to receive a first clock signal and assert a first signal if the frequency of the first clock signal is greater than a first upper threshold and assert a second signal if the frequency of the first clock signal is less than a first lower threshold. The second clock monitor may be configured to receive a second clock signal with a frequency higher than that of the first clock signal. The second clock monitor may be configured to compare the second clock signal, dependent upon the first clock signal, to second upper and lower thresholds and assert a third signal if the frequency of the second clock signal is greater than the second upper threshold and assert a fourth signal if the frequency is less than the second lower threshold.
Abstract:
An apparatus, a method, and a system are presented in which the apparatus may include a security circuit, a processor, and an interface controller. The security circuit may be configured to generate a keyword. The processor may be configured to determine one or more policies to be applied to usage of the keyword, and to generate a policy value. The policy value may include one or more data bits indicative of the determined one or more policies. The interface controller may be configured to generate a message including the keyword and the policy value. The interface controller may also be configured to send the message.
Abstract:
Embodiments of a bridge circuit and system are disclosed that may allow for converting transactions from one communication protocol to another. The bridge circuit may be coupled to a first bus employing a first communication protocol, and a second bus employing a second communication protocol. The bridge circuit may be configured to convert transactions from the first communication protocol to the second communication protocol, and convert transaction from the second communication protocol to the first communication protocol. In one embodiment, the bridge circuit may be further configured to flag transactions that cannot be converted from the second communication protocol to the first communication protocol. In a further embodiment, an error circuit coupled to the bridge circuit may be configured to detect flagged transactions.
Abstract:
An apparatus, a method, and a system are presented in which the apparatus includes an interface control circuit that may be configured to receive a message including a cryptographic keyword and a policy value. The policy value may include one or more data bits indicative of one or more policies that define allowable usage of the cryptographic keyword. The apparatus also includes a security circuit that may be configured to extract the cryptographic keyword and the policy value from the message, and to apply at least one policy of the one or more policies to usage of the cryptographic keyword in response to a determination that an authentication of the message succeeded.
Abstract:
In an embodiment, a system is provided in which the private key is managed in hardware and is not visible to software. The system may provide hardware support for public key generation, digital signature generation, encryption/decryption, and large random prime number generation without revealing the private key to software. The private key may thus be more secure than software-based versions. In an embodiment, the private key and the hardware that has access to the private key may be integrated onto the same semiconductor substrate as an integrated circuit (e.g. a system on a chip (SOC)). The private key may not be available outside of the integrated circuit, and thus a nefarious third party faces high hurdles in attempting to obtain the private key.
Abstract:
An apparatus, a method, and a system are presented in which the apparatus includes an interface control circuit that may be configured to receive a message including a cryptographic keyword and a policy value. The policy value may include one or more data bits indicative of one or more policies that define allowable usage of the cryptographic keyword. The apparatus also includes a security circuit that may be configured to extract the cryptographic keyword and the policy value from the message, and to apply at least one policy of the one or more policies to usage of the cryptographic keyword in response to a determination that an authentication of the message succeeded.
Abstract:
An apparatus, a method, and a system are presented in which the apparatus includes an interface control circuit that may be configured to receive a message including a cryptographic keyword and a policy value. The policy value may include one or more data bits indicative of one or more policies that define allowable usage of the cryptographic keyword. The apparatus also includes a security circuit that may be configured to extract the cryptographic keyword and the policy value from the message, and to apply at least one policy of the one or more policies to usage of the cryptographic keyword in response to a determination that an authentication of the message succeeded.